

HM-6514/883

1024 x 4 CMOS RAM

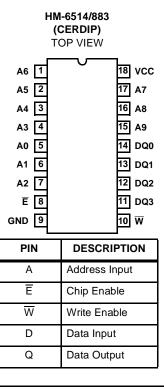
March 1997

Features

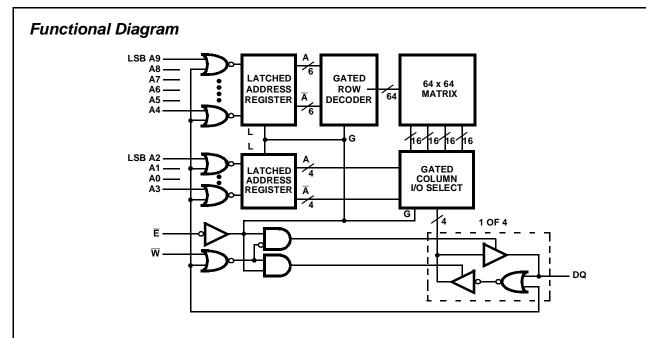
- This Circuit is Processed in Accordance to MIL-STD-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- Low Power Standby..... 125µW Max
- Data Retention at 2.0V Min
- TTL Compatible Input/Output
- Common Data Input/Output
- Three-State Output
- Standard JEDEC Pinout
- Fast Access Time 120/200ns Max
- 18 Pin Package for High Density
- Gated Inputs No Pull Up or Pull Down Resistors Required
- On-Chip Address Register

Description

The HM-6514/883 is a 1024 x 4 static CMOS RAM fabricated using self-aligned silicon gate technology. The device utilizes synchronous circuitry to achieve high performance and low power operation.


On chip latches are provided for addresses allowing efficient interfacing with microprocessor systems. The data output can be forced to a high impedance state for use in expanded memory arrays.

Gated inputs allow lower operating current and also eliminates the need for pull up or pull down resistors. The HM-6514/883 is fully static RAM and may be maintained in any state for an indefinite period of time.


Data retention supply voltage and supply current are guaranteed over temperature.

Order	ing Informati	20 Jns	C300ns C	TINFERATURE RANGE		P(G.NO.
	HM1-6514S/883	HM1-6514B/883	HM1-6514/883	-55 ⁰ C to 125 ⁰ C	CERDIP	F18.3

Pinout

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. 1-888-INTERSIL or 321-724-7143 | Intersil (and design) is a trademark of Intersil Americas Inc. Copyright © Intersil Americas Inc. 2002. All Rights Reserved

www.BDTIC.com/Intersil

Absolute Maximum Ratings	Thermal Information			
Supply Voltage+7.0V Input, Output or I/O Voltage GND -0.3V to VCC +0.3V ESD Classification Class 1	CERDIP Package			
	Die Characteristics			
	Gate Count		6910 Gates	

Operating Conditions

1 0	
Operating Voltage Range +4.5V to +5.5V	Input High Voltage
Operating Temperature Range55°C to +125°C	Input Rise and Fall Time 40ns Max
Input Low Voltage0V to +0.8V	

TABLE 1. HM-6514/883 DC ELECTRICAL PERFORMANCE SPECIFICATIONS

Device Guaranteed and 100% Tested

		(NOTE 1)	GROUP A		LIMITS		
PARAMETER	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Output Low Voltage	VOL	VCC = 4.5V IOL = 3.2mA	1, 2, 3	$-55^{0}C \leq T_{A} \leq +125^{0}C$	-	0.4	V
Output High Voltage	VOH	VCC = 4.5V IOH = -1.0mA	1, 2, 3	-55 ⁰ C ≤ T _A ≤ +125 ⁰ C	2.4	-	V
Input Leakage Current	.BL	VC) = 5.5V, VI = GNE or VCC	com/	-55 ⁰ C (→ 125 ⁰ C	r.0	+1.0	μΑ
Input/Output Leakage Current	IIOZ	VCC = 5.5 V, VIO = GND or VCC	1, 2, 3	$-55^{o}C \leq T_{A} \leq +125^{o}C$	-1.0	+1.0	μΑ
Data Retention Supply Current	ICCDR	$\begin{array}{l} VCC = 2.0V,\\ \overline{E} = VCC \ -0.3V,\\ IO = 0mA \end{array}$	1, 2, 3	$-55^{0}C \leq T_{A} \leq +125^{0}C$	-	25	μΑ
Operating Supply Current	ICCOP	$\frac{VCC}{E} = 5.5V, \text{ (Note 2)}$ $\overline{E} = 1MHz$	1, 2, 3	$-55^{0}C \leq T_{A} \leq +125^{0}C$	-	7	mA
Standby Supply Current	ICCSB	$\frac{VCC}{E} = 5.5V,$ $\overline{E} = VCC-0.3V,$ IO = 0mA	1, 2, 3	$-55^{0}C \leq T_{A} \leq +125^{0}C$	-	50	μΑ

NOTES:

1. All voltages referenced to device GND.

2. Typical derating 1.5mA/MHz increase in ICCOP.

TABLE 2. HM-6514/883 AC ELECTRICAL PERFORMANCE SPECIFICATIONS

Device Guaranteed and 100% Tested

						LIMITS						
		(NOTES		GROUP		HM-6514S/883		HM-6514B/883		HM-6514/883		
PARAMETER	SYMBOL		(NOTES 1, 2) CONDITIONS	A SUB- GROUPS	TEMPERA- TURE	MIN MAX		MIN MAX		MIN MAX		UNITS
Chip Enable Access Time	(1) T	ELQV	VCC = 4.5 and 5.5V	9, 10, 11	$\begin{array}{l} \text{-55}^{0}\text{C} \leq \text{T}_{\text{A}} \\ \leq \text{+125}^{0}\text{C} \end{array}$	-	120	-	200	-	300	ns
Address Access Time	(2) T	AVQV	VCC = 4.5 and 5.5V, Note 3	9, 10, 11	$\begin{array}{l} \text{-55}^{0}\text{C} \leq \text{T}_{\text{A}} \\ \leq \text{+125}^{0}\text{C} \end{array}$	-	120	-	220	-	320	ns
Chip Enable Pulse Negative Width	(5) TI	ELEH	VCC = 4.5 and 5.5V	9, 10, 11	$\begin{array}{l} -55^{0}C \leq T_{A} \\ \leq +125^{0}C \end{array}$	120	-	200	-	300	-	ns
Chip Enable Pulse Positive Width	(6) T	EHEL	VCC = 4.5 and 5.5V	9, 10, 11	$\begin{array}{l} \text{-55}^{0}\text{C} \leq \text{T}_{\text{A}} \\ \leq \text{+125}^{0}\text{C} \end{array}$	50	-	90	-	120	-	ns
Address Setup Time	(7) T.	AVEL	VCC = 4.5 and 5.5V	9, 10, 11	$\begin{array}{l} \text{-55}^{0}\text{C} \leq \text{T}_{\text{A}} \\ \leq \text{+125}^{0}\text{C} \end{array}$	0	-	20	-	20	-	ns
Address Hold Time	(8) TI	ELAX	VCC = 4.5 and 5.5V	9, 10, 11	$\begin{array}{l} \text{-55}^{0}\text{C} \leq \text{T}_{\text{A}} \\ \leq \text{+125}^{0}\text{C} \end{array}$	40	-	50	-	50	-	ns
Write Enable Pulse Width	(9) T	WLWH	VCC = 4.5 and 5.5V	9, 10, 11	$\begin{array}{l} \text{-55}^{0}\text{C} \leq \text{T}_{\text{A}} \\ \leq \text{+125}^{0}\text{C} \end{array}$	120	-	200	-	300	-	ns
Write Enable Pulse Setup Time	(10) די	WLEH	VCC = 4.5 and 5.5V	9, 10, 11	$\begin{array}{l} \text{-55}^{0}\text{C} \leq \text{T}_{\text{A}} \\ \leq \text{+125}^{0}\text{C} \end{array}$	120	-	200	-	300	-	ns
Write Enable Pulse Hold Time	(11) TI	ELVH	VCC = 1.5 ar d 5.5)	9, 10, 11	-55 ⁰ C ≤ T, ≤ - 125 ⁹ C	120	Ir	200	e r	300		ns
Data Setup Time	(12) TI	DVWH	VCC = 4.5 and 5.5V	9, 10, 11	-55°C ≤ T _A ≤ +125°C	50	-	120		200	-	ns
Data Hold Time	(13) T	WHDX	VCC = 4.5 and 5.5V	9, 10, 11	$\begin{array}{l} \text{-55}^{0}\text{C} \leq \text{T}_{\text{A}} \\ \leq \text{+125}^{0}\text{C} \end{array}$	0	-	0	-	0	-	ns
Write Data Delay Time	(14) T	WLDV	VCC = 4.5 and 5.5V	9, 10, 11	$\begin{array}{l} \textbf{-55}^{0}C \leq T_{A} \\ \leq \textbf{+125}^{0}C \end{array}$	70	-	80	-	100	-	ns
Early Output High-Z Time	(15) T	WLEL	VCC = 4.5 and 5.5V	9, 10, 11	$\begin{array}{l} \textbf{-55}^{0}C \leq T_{A} \\ \leq \textbf{+125}^{0}C \end{array}$	0	-	0	-	0	-	ns
Late Output High-Z Time	(16) T	EHWH	VCC = 4.5 and 5.5V	9, 10, 11	$\begin{array}{l} \textbf{-55}^{0}C \leq T_{A} \\ \leq \textbf{+125}^{0}C \end{array}$	0	-	0	-	0	-	ns
Read or Write Cycle Time	(17) T	ELEL	VCC = 4.5 and 5.5V	9, 10, 11	$\begin{array}{l} \text{-55}^{\text{O}}\text{C} \leq \text{T}_{\text{A}} \\ \leq \text{+125}^{\text{O}}\text{C} \end{array}$	170	-	290	-	420	-	ns

NOTES:

1. All voltages referenced to device GND.

2. Input pulse levels: 0.8V to VCC-2.0V; Input rise and fall times: 5ns (max); Input and output timing reference level: 1.5V; Output load: 1 TTL gate equivalent, CL = 50pF (min) - for CL greater than 50pF, access time is derated by 0.15ns per pF.

3. TAVQV = TELQV + TAVEL.

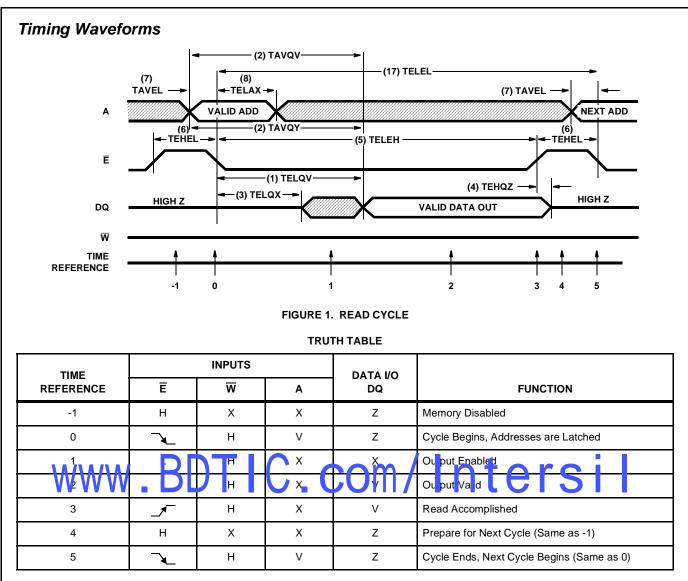
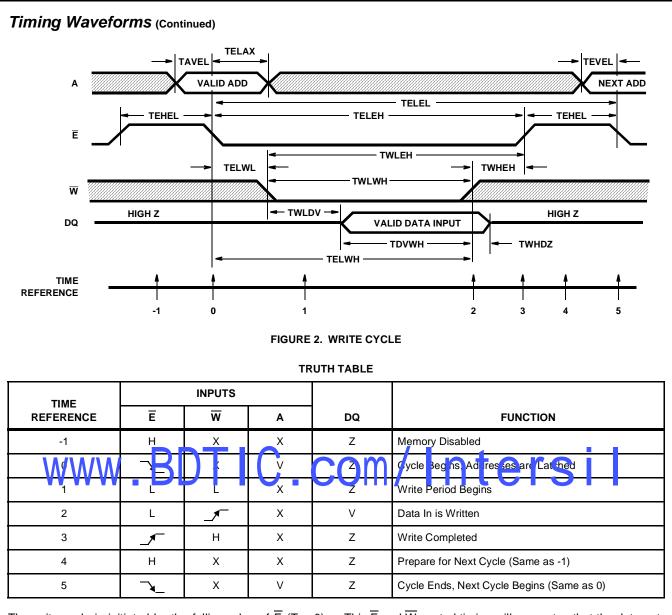

					HM-65	14/883	
					LIM	LIMITS	
PARAMETER	SYMBOL	CONDITIONS	NOTE	TEMPERATURE	MIN	МАХ	UNITS
Input Capacitance	CI	VCC = Open, f = 1MHz, All Measurements Referenced to Device Ground	1	T _A = +25 ^o C	-	8	pF
Input/Output Capacitance	CIO	VCC = Open, f = 1MHz, All Measurements Referenced to Device Ground	1	T _A = +25 ^o C	-	10	pF
Chip Enable Output Disable Time	TELQX	VCC = 4.5 and 5.5V	1	$\begin{array}{l} \text{-55}^{\text{o}}\text{C} \leq \text{T}_{\text{A}} \leq \\ \text{+125}^{\text{o}}\text{C} \end{array}$	5	-	
Chip Enable Output Disable Time	TEHQZ	VCC = 4.5 and 5.5V HM-6514S/883	1	$-55^{o}C \le T_{A} \le$ +125 ^{o}C	-	50	ns
		VCC = 4.5 and 5.5V HM-6514B/883	1	$-55^{o}C \le T_{A} \le$ +125 ^{o}C	-	80	ns
		VCC = 4.5 and 5.5V HM-6514/883	1	$\begin{array}{l} \text{-55}^{\text{o}}\text{C} \leq \text{T}_{\text{A}} \leq \\ \text{+125}^{\text{o}}\text{C} \end{array}$	-	100	ns
High Level Output Voltage	VOH2	VCC = 4.5V, IO = -100µA	1	$-55^{\circ}C \le T_A \le$ +125°C	VCC -0.4	-	V

TABLE 3. HM-6514/883 ELECTRICAL PERFORMANCE SPECIFICATIONS

NOTES:

1. The parameters listed in Table 3 are controlled via design, or process parameters are characterized upon initial design and after major process and/or design changes.


WW	N BDT LAELE 4. APFLICABL SUBGROUP NTERS							
	CONFORMANCE GROUPS	METHOD	SUBGROUPS					
	Initial Test	100%/5004	-					
	Interim Test	100%/5004	1, 7, 9					
	PDA	100%/5004	1					
	Final Test	100%/5004	2, 3, 8A, 8B, 10, 11					
	Group A	Samples/5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11					
	Groups C & D	Samples/5005	1, 7, 9					

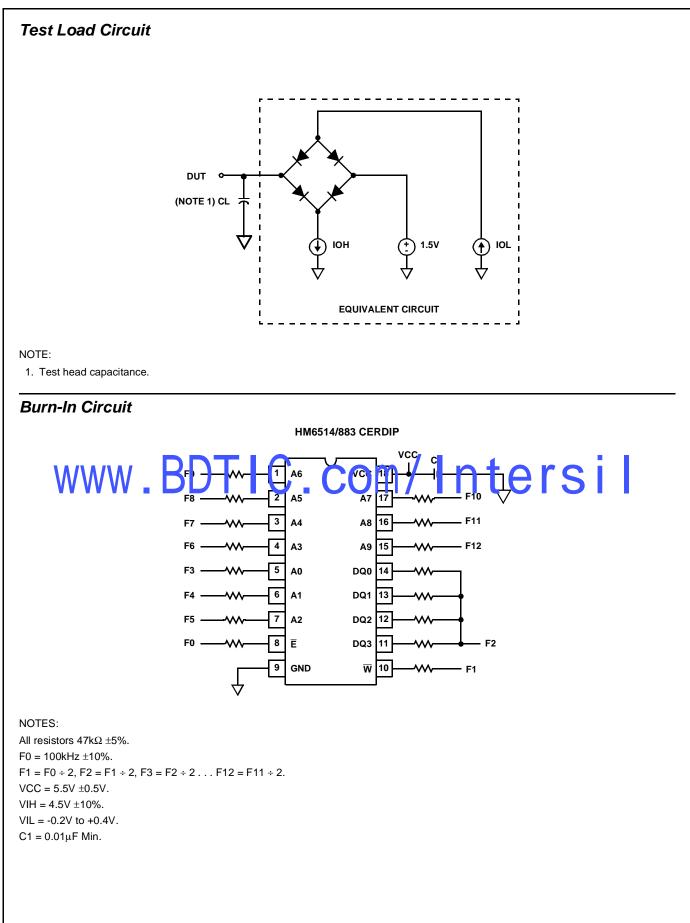
The address information is latched in the on-chip registers on the falling edge of \overline{E} (T = 0). Minimum address set up and hold time requirements must be met. After the required hold time, the addresses may change state without affecting device operation. During time (T = 1) the output becomes

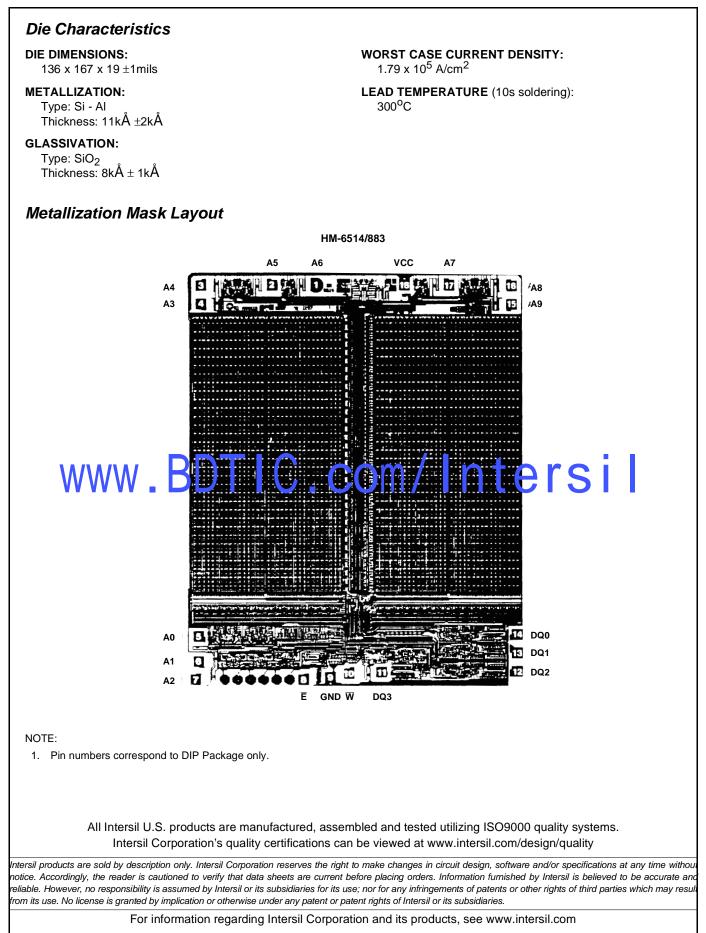
enabled but data is not valid until during time (T = 2). \overline{W} must remain high throughout the read cycle. After the output data has been read, \overline{E} may return high (T = 3). This will disable the output buffer and all inputs, and ready the RAM for the next memory cycle (T = 4).

HM-6514/883

The write cycle is initiated by the falling edge of \overline{E} (T = 0), which latches the address information in the on-chip registers. There are two basic types of write cycles, which differ in the control of the common data-in/data-out bus.

Case 1: \overline{E} falls before \overline{W} falls


The output buffers may become enabled (reading) if \overline{E} falls before \overline{W} falls. \overline{W} is used to disable (three-state) the outputs so input data can be applied. TWLDV must be met to allow the \overline{W} signal time to disable the outputs before applying input data. Also, at the end of the cycle the outputs may become active if \overline{W} rises before \overline{E} . The RAM outputs and all inputs will three-state after \overline{E} rises (TEHQZ). In this type of write cycle TWLEL and TEHWH may be ignored.


Case 2: \overline{E} falls equal to or after \overline{W} falls, and \overline{E} rises before or equal to \overline{W} rising

This \overline{E} and \overline{W} control timing will guarantee that the data outputs will stay disabled throughout the cycle, thus simplifying the data input timing. TWLEL and TEHWH must be met, but TWLDV becomes meaningless and can be ignored. In this cycle TDVWH and TWHDX become TDVEH and TEHDX. In other words, reference data setup and hold times to the \overline{E} rising edge.

	IF	OBSERVE	IGNORE
Case 1	\overline{E} falls before \overline{W}	TWLDV	TWLEL
Case 2	\overline{E} falls after \overline{W} and \overline{E} rises before \overline{W}	TWLEL TEHWH	TWLDV TWHDX

If a series of consecutive write cycles are to be performed, \overline{W} may be held low until all desired locations have been written (an extension of Case 2).

