

Typical Applications

The HMC891LP5E is ideal for:

- Test & Measurement Equipment
- Military RADAR & EW/ECM
- SATCOM & Space
- Industrial & Medical Equipment

Functional Diagram

Features

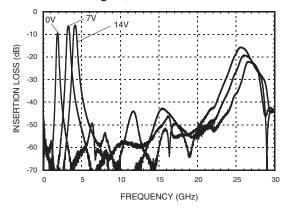
Fast Tuning Response; 200 ns
Excellent Wideband Rejection; 30 dB
Single Chip Replacement
for Mechanically Tuned Designs
32 Lead 5x5 mm SMT Package

General Description

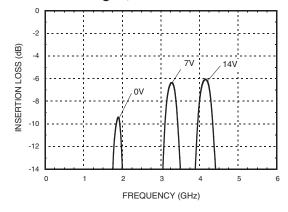
The HMC891LP5E is a MMIC band pass filter which features a user selectable passband frequency. The 3 dB filter bandwidth is approximately 9%. The 20 dB filter bandwidth is approximately 27%. The center frequency can be varied between 2 and 3.9 GHz by applying an analog tune voltage between 0 and 14V. This tunable filter can be used as a much smaller alternative to physically large switched filter banks and cavity tuned filters. The HMC891LP5E has excellent microphonics due to the monolithic design, and provides a dynamically adjustable solution in advanced communications applications.

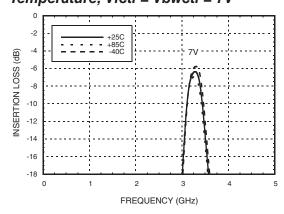
Electrical Specifications, $T_A = +25$ °C, $V_{fctl} = V_{bwctl}$ Unless Otherwise Stated

Parameter	Min.	Тур.	Max.	Units
F _{center} Tuning Range	2		3.9	GHz
3 dB Bandwidth		9		%
Low Side Rejection Frequency (Rejection >20 dB)		0.88*F _{center}		GHz
High Side Rejection Frequency (Rejection >20 dB)		1.15*F _{center}		GHz
Re-entry Frequency (Rejection <30 dB)		22		GHz
3 dB Bandwidth Control (V _{bwctl})		±3		%
Insertion Loss		7		dB
Return Loss		10		dB
Maximum Input Power for Linear Operation			10	dBm
Frequency Control Voltage (V _{fctl})	0		14	V
Source/Sink Current (I _{fctl})			±1	mA
Bandwidth Control Voltage (V _{bwctl})	0		14	V
Source/Sink Current (I _{bwctl})			±1	mA
Residual Phase Noise [1] (1 MHz Offset)		-155		dBc/Hz
F _{center} Drift Rate		-0.5		MHz/°C
Tuning Characteristics ^[2] tFULLBAND (0% Vfctl to 90% RF)		200		ns

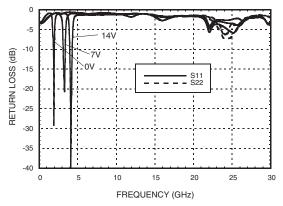

^[1] Optimum residual phase noise performance requires the use of a low noise driver circuit.

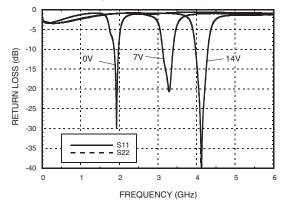
^[2] Tuning speed is dependent on driver circuit. Data measured with a high speed op-amp driver and includes driver slew rate delay.



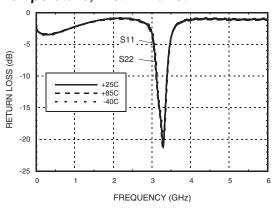

Broadband Insertion Loss vs. Control Voltages, Vfctl = Vbwctl

Insertion Loss vs. Control Voltages, Vfctl = Vbwctl

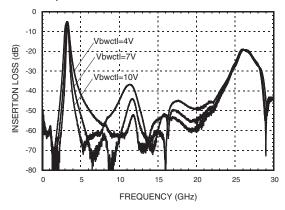

Insertion Loss vs. Temperature, Vfctl = Vbwctl = 7V

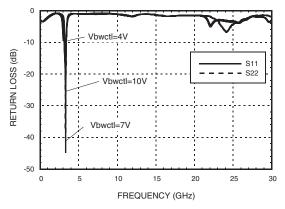

Application Sup

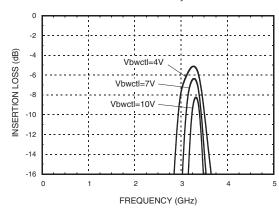
FILTER - TUNABLE, BAND PASS SMT 2.0 - 3.9 GHz


Broadband Return Loss vs. Control Voltages, Vfctl = Vbwctl

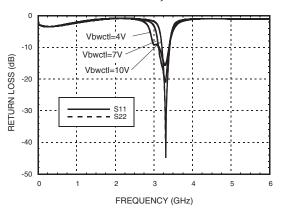
Return Loss vs. Control Voltages, Vfctl = Vbwctl

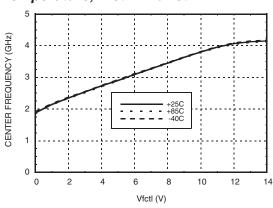

Return Loss vs. Temperature, Vfctl = Vbwctl = 7V


Broadband Insertion Loss vs. Vbwctl, Vfctl = 7V

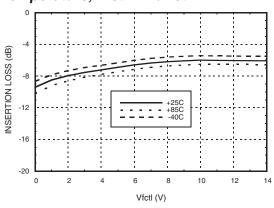

2.0 - 3.9 GHz

FILTER - TUNABLE, BAND PASS SMT


Broadband Return Loss vs. Vbwctl, Vfctl = 7V

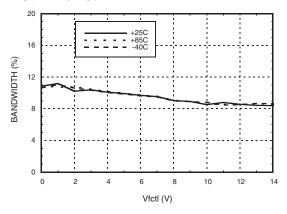

Insertion Loss vs. Vbwctl, Vfctl = 7V

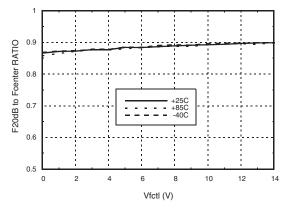
Return Loss vs. Vbwctl, Vfctl = 7V

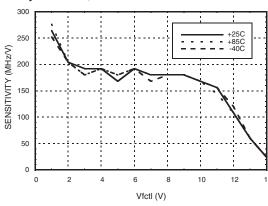


Center Frequency vs. Temperature, VfctI = VbwctI

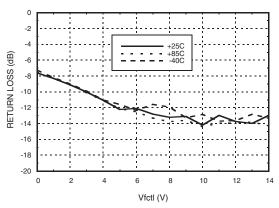
Applicat In Sup


Insertion Loss vs. Temperature, Vfctl = Vbwctl

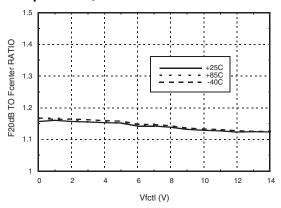



3 dB Bandwidth vs. Temperature, Vfctl = Vbwctl

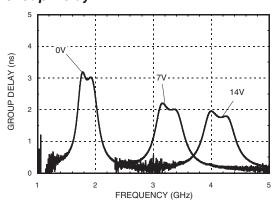
Low Side Rejection Ratio vs. Temperature, Vfctl = Vbwctl [1]



Tuning Sensitivity vs. Temperature, Vfctl = Vbwctl

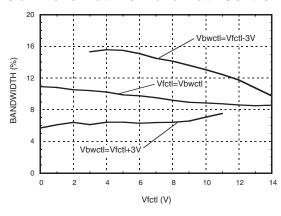


FILTER - TUNABLE, BAND PASS SMT 2.0 - 3.9 GHz

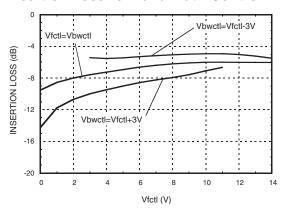

Maximum Return Loss in a 2 dB Bandwidth vs. Temperature, Vfctl = Vbwctl

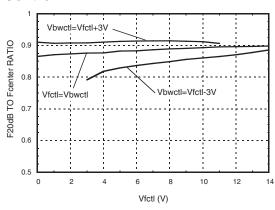
High Side Rejection Ratio vs. Temperature, Vfctl = Vbwctl [1]

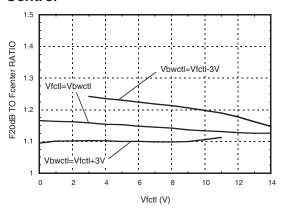
Group Delay

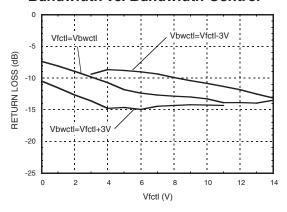


[1] Rejection ratio is defined as the ratio of the frequency at which the relative insertion loss is 20 dB to f center




3 dB Bandwidth vs. Bandwidth Control


Insertion Loss vs. Bandwidth Control

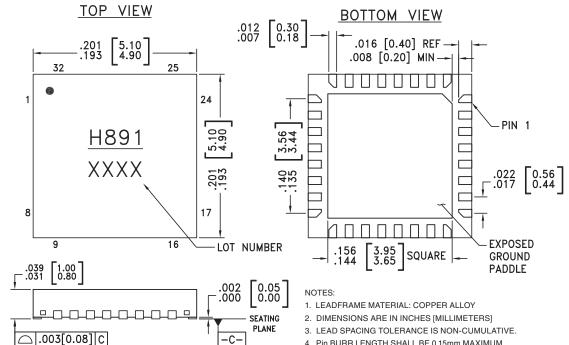

Low Side Rejection Ratio vs. Bandwidth Control [1]

High Side Rejection Ratio vs. Bandwidth Control [1]

Maximum Return Loss in a 2 dB Bandwidth vs. Bandwidth Control

[1] Rejection ratio is defined as the ratio of the frequency at which the relative insertion loss is 20 dB to fcenter

Absolute Maximum Ratings


Frequency Control Voltage (Vfctl)	-0.5 to +15V	
Bandwidth Control Voltage (Vbwctl)	-0.5 to +15V	
RF Power Input	27 dBm	
Storage Temperature	-65 to +150 °C	
ESD Rating (HBM)	Class 1B	

202	9 (1.12111)	0.000.2
A		
	ELECTROSTATIC S	ENSITIVE DEVICE
	OBSERVE HANDLIN	NG PRECAUTIONS

Reliability Information

Junction Temperature to Maintain 1 Million Hour MTTF	150 °C
Nominal Junction Temperature (T= 85 °C and Pin = 10 dBm)	90 °C
Operating Temperature	-40 to +85 °C
Operating Temperature	-40 to +85 °C

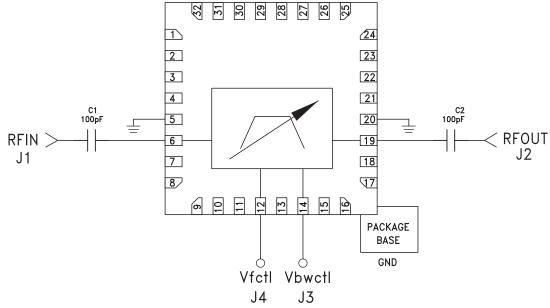
Outline Drawing

- Pin BURR LENGTH SHALL BE 0.15mm MAXIMUM.
 Pin BURR HEIGHT SHALL BE 0.05mm MAXIMUM.
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm.
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.
- 7. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED LAND PATTERN.

Package Information

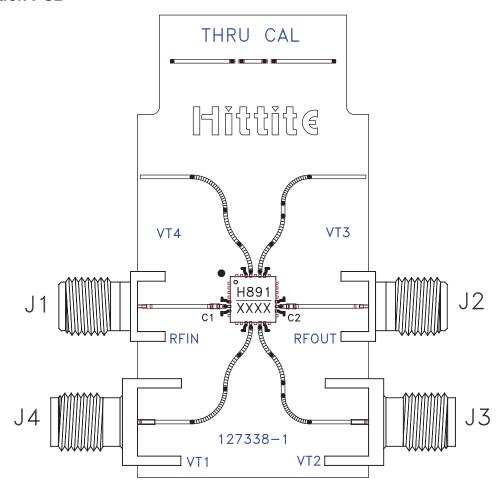
Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [1]
HMC891LP5E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [2]	<u>H891</u> XXXX

- [1] 4-Digit lot number XXXX
- [2] Max peak reflow temperature of 260 °C



Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1 - 4, 7 - 11, 13 15 - 18, 21 - 32	N/C	The pins are not connected internally; however, all data shown herein was measured with these pins connected to RF/DC ground externally.	
5, 20	GND	These pins and exposed paddle must be connected to RF/DC ground.	GND O
6	RFIN	This pin is DC coupled and matched to 50 Ohms. External voltage must not be applied to this pin.	250 ₀ 5nH
12	Vfctl	Center frequency control voltage.	Vfctl 5nH 2500
14	Vbwctl	Bandwidth control voltage.	Vbwctl 5nH 2500
19	RFOUT	This pin is DC coupled and matched to 50 Ohms. External voltage must not be applied to this pin.	250n 5nH


Application Circuit

Evaluation PCB

List of Materials for Evaluation PCB 128531 [1]

Item	Description
J1 - J4	SMA - SRI
C1, C2	100 pF Capacitor, 0402 Pkg.
U1	HMC891LP5E Filter
PCB [2]	127338 Evaluation PCB

^[1] Reference this number when ordering complete evaluation PCB

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohms impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

^[2] Circuit Board Material: Arlon 25FR or Rogers 25FR