HongKong

HK12B5

SEMICONDUCTOR

16M×8 Nonvolatile SRAM

FEATURES

- ▶ Data retention in the SRAM when absence of Vcc
- ▶ Data is automatically protected during power loss
- ▶ Directly replaces 16M×8 volatile static RAM or EEPROM
- ► Unlimited write cycles
- ► Low-power CMOS operation
- ► Over 10 years of data retention
- ► Standard 40-pin JEDEC pinout
- ► Available in 70,85,100 ns access times
- ► Read cycle time equals write cycle time
- ► Optional $\pm 5\%$ and $\pm 10\%$ operating range
- ▶ Optional industrial temperature range of -40°C to +70°C, designated IND

PIN DESCRIPTION

h ·	NC NC A20 A19 A18	1 2 3 4 5 6	40 39 38 37 36 33 34	A21	A0- CE GN DQ	A23 (-D(7	Chip Groun	n/Lata Ou	/ Enable)	'RAN
	A12	8	33	WE	WE	E		Enable (Low E	nable)	
	A7	9	32	A13	OE		Outpu	ıt Enable (Lov	w Enable)	
	A6	10	31	A8	NC		No Co	onnect		
	A5	11	30	A9						
	A4	12	29	A11						
	A3	13	28	OE						
	A2	14	27	A10						
	A1	15	26	CE						
	A0	16	25	DQ7						
	DQ0	17	24	DQ6						
	DQ1	18	23	DQ5						
	DQ2	19	22	DQ4						
	GND	20	21	DQ3						

DESCRIPTION

The HK12B5 131072k Nonvolatile SRAM is 134,217,728-bit, fully static, nonvolatile SRAM organized as 16M words by 8 bits. Each NV SRAM has a self-contained lithium energy source and control circuitry that constantly monitors Vcc for an out-of-tolerance condition. When such a condition occurs, the lithium energy source is automatically switches on and writes protection is unconditionally enabled to prevent garbled. The NV SRAM can be used in place of existing 16M×8 static RAMs directly conforming to the popular byte wide 40 pin DIP standard. There is no limit on the number of write cycles that can be executed and no additional support circuitry is required for microprocessor interface.

OPERATION Read Mode

The HK12B5 executes a read cycle whenever WE (Write Enable) is inactive (high) and CE

(Chip Enable) is active (low). The unique address specified by the 24 address inputs(A_0 - A_{23}) defines which of the 134,217,728 bytes of data is to be accessed. Valid data willbe available to the eight data output drivers within t_{ACC} (Access time) after the last addressInput signal is stable, providing that CE and OE (Output Enable) access times are also satisfied. If OE and CE access times are not satisfied, then data access must be measured form the later occurring signal (CE or OE) and the limiting parameter is either t_{CO} for CE or t_{OE} for OE rather than address access.

Write Mode

The HK12B5 is in the write mode whenever the CE signals and WE are in the active (low) state after address inputs are stable. The latter occurring falling edge of CE or WE will determine the start of the write cycle. The write cycle is terminated by the earlier rising edge of CE or WE. All address inputs must be kept valid throughout the write cycle. WE must return to the high state for a minimum recovery time (t_{WR}) before another cycle can be initiated. The OE control signal should be kept inactive (high) during write cycles to avoid bus contention. However, if the output bus has been enable (CE and OE active) then WE will disable the outputs in t_{ODW} from its falling edge.

Date Retention Mode

The HK12B5 provides full functional capability for V_{CC} greater than 4.5 or 4.75 volts and write protects by 4.35 or 4.75 volts. Date is maintained in the absence of V_{CC} , without any additional support circuitry. The nonvolatile static RAM constantly monitors V_{CC} . While the supply voltage decay, the RAM automatically write protects itself. All inputs to the RAM become don't care" and all outputs are high impedance. As Vcc falls below approximately 3.0 volts, the power switching circuit connects the lithium energy source to RAM to retain data. During power-up, when Vcc rises above approximately 3.0 volts, the power switching circuit connects the RAM. Normal RAM op tration can resume after Vcc exceeds 1.5 or 4.71 volts for HK11B3.

SEAL AND SHIPPING

The HK12B5 is shipping from HK semiconductor with the lithium energy source connected. But we guaranteed the energy capacity will not less than 90% full energy capacity. Normally, we supply full energy capacity chips to you.

ABSOLUTE MAXIMUM RATINGS

Voltage on Any Pin Relation to Ground -0.3V to +6.0V

Operating Temperature 0°C to 70°, -40° to +70°C for IND parts Storage Temperature -40°C to +70°C, -40°C to+70°C for IND parts

Soldering Temperature 200°C for 3 seconds

This is stress rating only functional operation of the device at these or any other conditions above those indicated in the operation sections of the specification is not implied. Exposure to absolute maximum rating conditions for long of time may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS (0°Cto70°C)

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS
Power Supply Voltage 1 (HK12B5)	V_{cc}	4.5	5.0	5.5	V
Power Supply Voltage 1 (HK12B5N)	V_{cc}	4.75	5.0	5.5	V
Logic1	V_{IH}	2.2		Vcc	V
Logic0	$V_{ m IL}$	0.0		+0.8	V

DC ELECTRICAL CHARACTERISTICS (0°Cto70°C: Vcc=5V±10%)

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS
Input Leakage Current	$ m I_{IL}$	-5.0		+ 5.0	mA
I/O Leakage Current CE≤V _{IH} ≤Vcc	I_{IO}	-5.0	_	+ 5.0	mA

Output Current @2.4V	I_{OH}	-1.0	_	_	mA
Output Current @0.4V	I_{OL}	2.0	_	_	mA
Standby Current CE=2.2V	I _{CCS1}	_	5.0	10.0	mA
Standby Current CE=Vcc-0.5V	I _{CCS2}	_	3.0	5.0	mA
Operating Current	I _{CCO1}	_	5	85	mA
Write Protection Voltage 1 (HK12B5)	V_{TP}	4.25	4.37	4.5	V
Write Protection Voltage 2 (HK12B5N)	V_{TP}	4.5	4.75	4.85	V

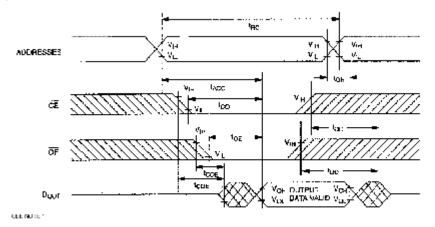
CAPACITANCE

PARAMETER	SYMBOL	TYP	MAX	UNITS
Input Capacitance	C_{IN}	5	10	pF
Input/output Capacitance	$C_{I/O}$	5	12	pF

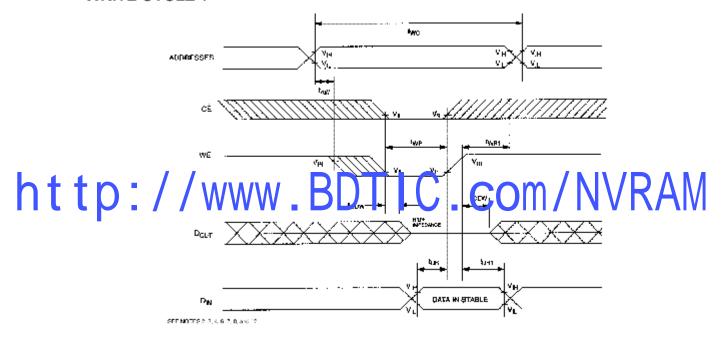
AC ELECTRICAL CHARACTERI STICS (0°Cto70°C;Vcc=5V±10%)

		HK12B5-70		HK12B5-85		HK12B5-100				
PARAMETER	SYM							UNITS	NOTES	
	5 1 1.1	MIN	MAX	MIN	MAX	MIN	MAX	011110	110120	
Read Cycle Time	t_{RC}	70		85		100		ns	_	
Access Time	t_{ACC}	1	70	-	85		100	ns	_	
OE to Output Valid	$t_{\rm OE}$		35		45		50	ns	_	
OE To Output Valid	t_{CO}		70		85		100	ns	_	
OE or CE to Output	$t_{\rm COE}$	5	_	5		5		ns	5	
Output High Z from Dissection	t_{OD}	,-	25		3	1	35	ns	\D \	١
Ou pu Hold from Ad Iress change	V V _E	V 5	טס	5)	6		ns	T.A	V
Write Cycle Time	$t_{ m WC}$	70		85		100	_	ns		
Write Pulse Width	t_{WP}	55		65	_	75	_	ns	3	
Address Setup Time	t_{AW}	0	_	0	—	0	_	ns		
Write Recovery Time	$t_{\mathrm{WR}1}$ $t_{\mathrm{WR}2}$	5 15	_	5 15		5 15		ns		
Output High Z From	t_{ODW}		25		30		35	ns	5	
Output Active from	t_{OEW}	5	_	5	_	5	_	ns	5	
Data Setup Time	$t_{ m DS}$	30	_	35	_	40	_	ns	4	
Data Hold Time	$t_{ m DH1} \ t_{ m DH2}$	0 10	_	0 10	_	0 10	_	ns		

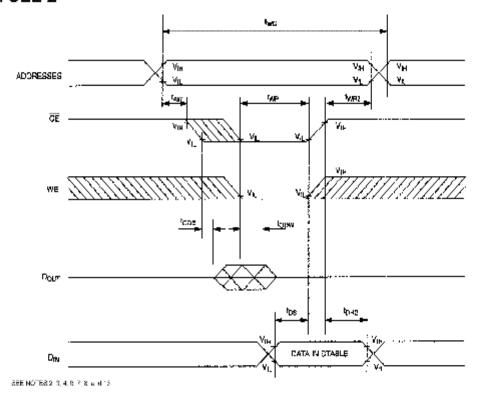
The parameter above all are designed data, please prolong more times for write operation because the cycle time maybe delay by the protect circuitry.

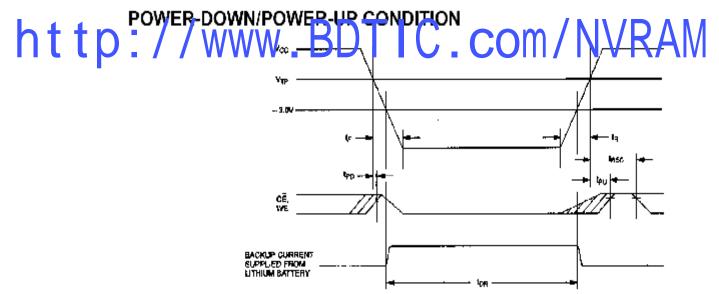

POWER-DOWN/POWER-UP TIMING

I O WEN-D	JULIU WER-CI IIIIII				
SYM	PARAMETER	MIN	MAX	UNITS	NOTES
t PD	CE at VIH before Power-Down	20	_	μs	_
t_{F}	V _{CC} Slew from 4.5V to 0V(CE at VIH)	300	_	μs	_
t _R	V _{CC} Slew from 0V to 4.5V(CE at VIH)	0	_	μs	_
t _{REC}	CE WE at VIH after Power-UP	2	125	ms	_


 $(t_A=25^{\circ}C)$

SYM	PARAMETER	MIN	TYP	MAX	UNITS	NOTES
t_{DR}	Expected Data Retention Time	_	10	_	years	9,10


READ CYCLE



WRITE CYCLE 1

WRITE CYCLE 2

WARNING:

device is in the battery backup mode.

NOTE:

- 1. WE is high for a Read Cycle
- 2. $OE = V_{IH}$ or V_{IL} . If $OE = V_{IH}$ during write cycle, the output butters remain in a high impedance state.
- 3. t_{WP} is specified as the logical AND of CE and WE . T_{WP} is measured from the latter of CE or WE going low to the earlier of CE or WE going high.
- t_{DH}, t_{DS} are measured from the earlier of CE or WE going high. 4.
- 5. These parameters are sampled with a 5pF load and are not 100% tested.
- If the CE low transition occurs simultaneously with or latter than the WE low transition in Write Cycle1, the output buffers remain in a high impedance state during this period.
- 7. If the CE high transition occurs prior to or simultaneously with the WE high transition, the output buffers remain in high impedance state during this period.
- If WE is low or the WE low transition occurs prior to or simultaneously with the CE low transition the output buffers remain in a high impedance state during this period.
- All DC operating conditions DC electrical characteristics and Ac electrical characteristics apply to both standard part and those designated IND Parts with designated meet specifications over a temperature of -40°C to+70°C.
- 10. The expected date retention time is under the specified condition (at 25°C). If the IC is exposed continuously to the max test condition and max temperatures, the life of the IC will be shorted. In a power down condition the voltage on any pin may not exceed the voltage on Vcc.

11. In a power down condition the chage on a hypra may not exceed the valtage of Vcc. Vcc./ WWW DD DD 12. twn, t_{DH1} are measured from WE going high.

13. t_{WR2}, t_{DH2} are measured from CE going high.

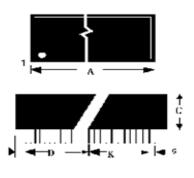
DC TEST CONDITION

Outputs Open Cycle=200ns for operating current All voltages are referenced to ground

AC TEST CONDITIONS

Output Load: 100pF+1TTL Gate Input Pulse Levels: 0-3.0V

Timing Measurement Reference Levels Input:


1.5V Output:

1.5V

Input pulse Rise and Fall Times: 5ns

HK12B5 NONVOLATILE SRAM 40 PIN 740 MILMODULE

Pl	KG	40-PIN				
D	IM	MIN	MAX			
Α	IN	2.118	2.137			
N.	ſМ	53.80	54.30			
В	IN	0.720	0.740			
N.	ſМ	18.29	18.80			
С	IN	0.571	0.591			
N.	ſМ	14.52	15.02			
D	IN	0.080	0.110			
N.	1M	2.03	2.79			
G	IN	0.090	0.110			
N.	ſМ	2.29	2.79			
Н	IN	0.590	0.630			
N.	ſМ	14.99	16.00			

J	IN	0.008	0.012	
N	4M	0.20	0.30	
K	IM	0.015	0.021	
N	4M	0.38	0.53	

http://www.BDTIC.com/NVRAM