

Optical Node RF Amplifier 50 - 1000 MHz

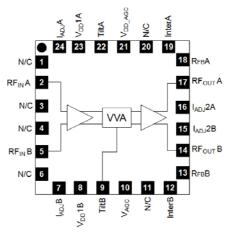
Rev. V1

Features

- -6 dBm to +2 dBm Optical Input Range
- Low Equivalent Input Noise (EIN): 3.2 pA/rtHz
- Single +5 V Bias
- 29 dB Gain at 55 MHz; 34 dB Gain at 1000 MHz
- 27 dB Gain Control Range
- +24 dBmV/ch Output at 550 MHz
- Lead-Free 4 mm PQFN-24LD Plastic Package
- Halogen-Free "Green" Mold Compound
- RoHS* Compliant and 260°C Reflow Compatible

Description

The MAAM-010333 provides high gain, low noise and low distortion amplification for optical node applications.


The MAAM-010333 is fabricated using M/A-COM Technology Solutions' low noise GaAs pHEMT technology in a lead-free 4 mm 24-lead package. The amplifier requires a minimal number of off-chip components resulting in a highly integrated low cost solution.

Ordering Information ^{1,2}

Part Number	Package
MAAM-010333-TR1000	1000 Piece Reel
MAAM-010333-TR3000	3000 Piece Reel
MAAM-010333-001SMB	Sample Test Board

- 1. Reference Application Note M513 for reel size information.
- 2. All sample boards include 5 loose parts. Sample board is supplied with mounted photodiode.
- * Restrictions on Hazardous Substances, European Union Directive 2002/95/EC.

Functional Schematic

Pin Configuration ³

Pin Configuration				
Pin No.	Pin Name	Description		
1	N/C	No Connection		
2	RF _{IN} A	RF Input A		
3	N/C	No Connection		
4	N/C	No Connection		
5	RF _{IN} B	RF Input B		
6	N/C	No Connection		
7	$I_{ADJ}B$	Current Adjust		
8	V _{DD} 1B	+ 5V Bias Voltage		
9	TiltB	Tilt Connection		
10	V_{AGC}	AGC Control Voltage: 0V to 3V		
11	N/C	No Connection		
12	InterB	Interstage Pin		
13	R _{FB} B	Feedback Resistor		
14	RF _{OUT} B	RF Output B		
15	I _{ADJ} 2B	Current Adjust		
16	I _{ADJ} 2A	Current Adjust		
17	RF _{OUT} A	RF Output A		
18	$R_{FB}B$	Feedback Resistor		
19	InterA	Interstage Pin		
20	N/C	No Connection		
21	V_{DD_AGC}	+ 5V AGC Bias Voltage		
22	TiltA	Tilt Connection		
23	$V_{DD1}A$	+ 5V Bias Voltage		
24	I _{ADJ} 1	Current Adjust		
25	Paddle	RF & DC Ground		

3. The exposed pad centered on the package bottom must be connected to RF and DC ground.

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available.

- North America Tel: 800.366.2266 Europe Tel: +353.21.244.6400 • China Tel: +86.21.2407.1588 India Tel: +91.80.43537383
- Visit www.macomtech.com for additional data sheets and product information.

Optical Node RF Amplifier 50 - 1000 MHz

Rev. V1

Electrical Specifications⁴: $V_{DD} = +5$ Volts, $T_A = 25$ °C, $Z_0 = 75$ Ω

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Trans-Impedance Gain ^{5,6}	50 MHz 870 MHZ 1 GHz	dB	26.5 31.0 31.5	29.0 33.0 34.0	30.5 35.0 35.5
Gain Tilt ⁷	$V_{AGC} = +3 V$ $V_{AGC} = 0 V$	dB	-	5 7	-
Gain Flatness 8	V _{AGC} : 0 to 3 V	dB		0.7	
Gain Control Range	50 MHz 870 MHZ 1 GHz	dB	25.5 23.0 24.0	29.0 26.0 27.0	32.0 29.0 30.0
AGC Control Voltage Range	50 MHz - 1 GHz	V	0	-	+3
EIN ⁶	50 MHz - 1 GHz	pA/rtHz	1	3.2	-
Output Return Loss	50 MHz - 1 GHz	dB	-	18	-
CTB ⁹	79 channels	dBc	-	-68	-
CSO ⁹	79 channels	dBc	-	-65	-
Current	$V_{DD} = +5 V$	mA	225	260	295

- 4. Performance is specified using JDSU Photodiode EPM-745 or equivalent (EPM705) and output balun # MABA-009210-CT1760.
- 5. Gain = $20*log(Z_T/75)$, where Z_T = Transconductance (Ω)
- 6. Specified at maximum gain (V_{AGC} = +3.0 V)
- 7. Positive gain slope from 50 MHz to 1 GHz (tilt of best fit straight line from 50 MHz to 1 GHz)
- 8. Flatness defined as peak-peak deviation from best fit straight line.
- 9. Optical Input Power Range: -6 dBm to +2 dBm; 79 channels

OMI = 3.5%; Pout = +24 dBmV/ch at 550 MHz

 P_{OUT} = +22.5 dBmV/ch at 55 MHz; +24 dBmV/ch at 550 MHz

Absolute Maximum Ratings 10,11,12

Parameter	Absolute Maximum	
Input Power	+3 dBm Optical	
Operating Voltage	+15 volts	
AGC Voltage	+5 volts	
Operating Temperature	-40°C to +85°C	
Junction Temperature ¹³	+150°C	
Storage Temperature	-65°C to +150°C	

- Exceeding any one or combination of these limits may cause permanent damage to this device.
- M/A-COM Technology Solutions does not recommend sustained operation near these survivability limits.
- 12. Operating at nominal conditions with $T_J \le +150$ °C will ensure MTTF > 1 x 10^6 hours.
- 13. Junction Temperature $(T_J) = T_C + \Theta jc * ((V * I) (P_{OUT} P_{IN}))$ Typical thermal resistance $(\Theta jc) = 19^{\circ}$ C/W.

a) For $T_C = 25^{\circ}C$,

 T_J = 53 °C @ 5 V, 295 mA

b) For $T_C = 85^{\circ}C$,

T_J = 112 °C @ 5 V, 295 mA

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

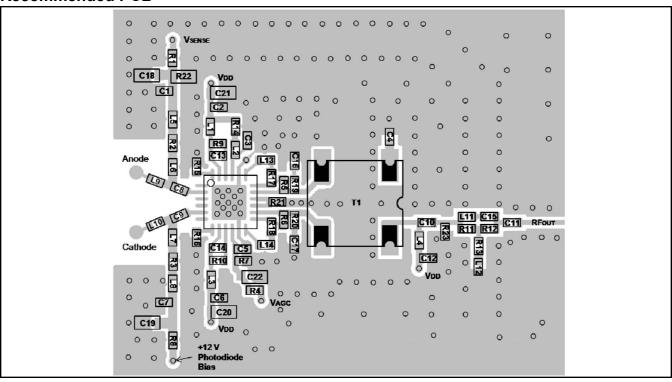
Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

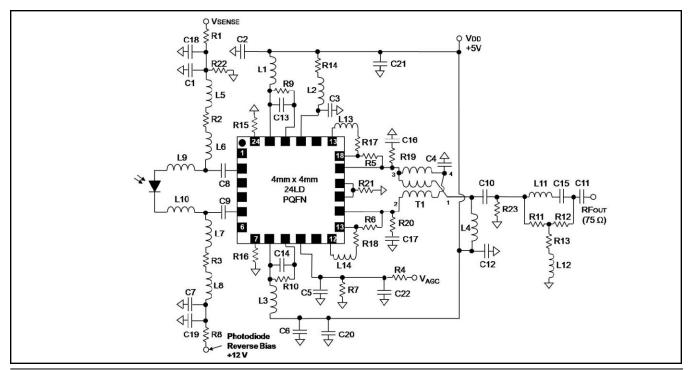
ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.

PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology.

PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

- North America Tel: 800.366.2266
 Europe Tel: +353.21.244.6400
 India Tel: +91.80.43537383
 China Tel: +86.21.2407.1588
- Visit www.macomtech.com for additional data sheets and product information.


M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the group of a principle of the group of the


Optical Node RF Amplifier 50 - 1000 MHz

Rev. V1

Recommended PCB

Schematic Including Off-Chip Components

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.

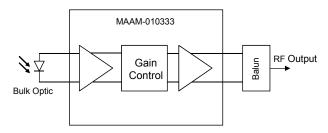
PER LIMINARY, Data Sheets contain information regarding a product M/A COM Technology.

PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

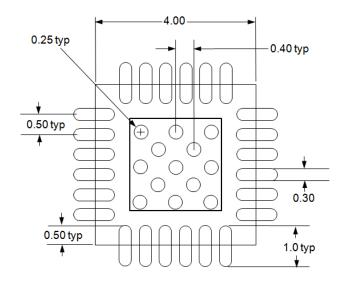
- North America Tel: 800.366.2266
 India Tel: +91.80.43537383
 Europe Tel: +353.21.244.6400
 China Tel: +86.21.2407.1588
- Visit www.macomtech.com for additional data sheets and product information.

M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the group of information contained herein without notice.

Optical Node RF Amplifier 50 - 1000 MHz


Rev. V1

Parts List


Component	Value	Case Style
L1 - L8 ¹⁴	Ferrite Bead	0402
L9 - L10	12 nH w/w	0402
L11	8.2 nH	0402
L12	33 nH	0402
L13 - L14	10 nH	0402
C1 - C12	10 nF	0402
C13 - C14	2.7 pF	0402
C15	3.0 pF	0402
C16 - C17	2.0 pF	0402
C18 - C22	1.0 µF	0603
R1 - R4	1 kΩ	0402
R5 - R7	680 Ω	0402
R8	200 Ω	0402
R9 - R10	120 Ω	0402
R11 - R12	39 Ω	0402
R13	82 Ω	0402
R14	180 Ω	0402
R15 - R16	12 Ω	0402
R17 - R18	47 Ω	0402
R19 - R20	62 Ω	0402
R21	6.2 Ω	0402
R22	1 kΩ	0603
R23	470 Ω	0402
T1 ¹⁵	1:1 Balun	SM-118A

14. Ferrite Bead from Murata, part number BLM15HD182SN 15. M/A-COM Technology Solutions MABA-009210-CT1760 1:1 T_X Line Balun

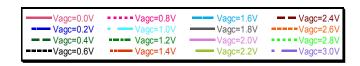
Application Schematic

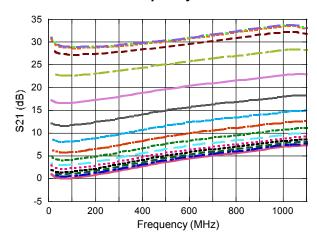
PCB Land Pattern

All dimension are in mm

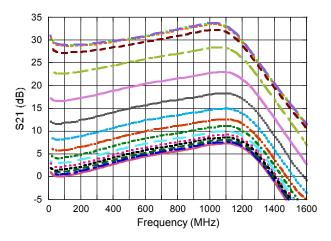
PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed. • India Tel: +91.80.43537383

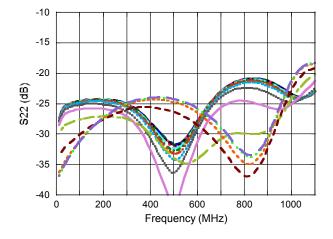
• North America Tel: 800.366.2266 • Europe Tel: +353.21.244.6400 • China Tel: +86.21.2407.1588


Visit www.macomtech.com for additional data sheets and product information.


Optical Node RF Amplifier 50 - 1000 MHz

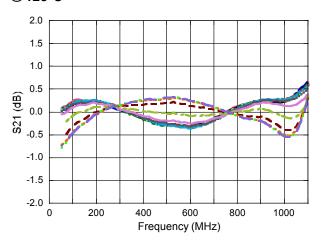
Rev. V1


Typical Performance Curves: +25°C, VAGC = 0V to 3V in 0.2 V Steps

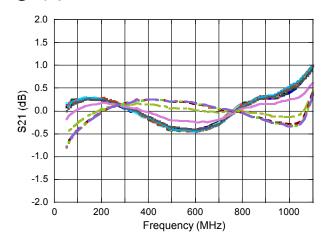

Receiver Gain vs. Frequency to 1.1 GHz

Receiver Gain vs. Frequency to 1.6 GHz

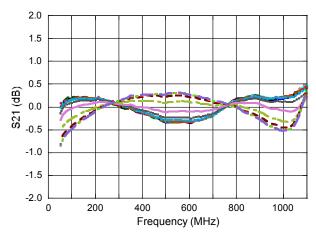
Output Return Loss vs. Frequency


Optical Node RF Amplifier 50 - 1000 MHz

Rev. V1


Typical Performance Curves: VAGC = 0V to 3V in 0.2 V Steps

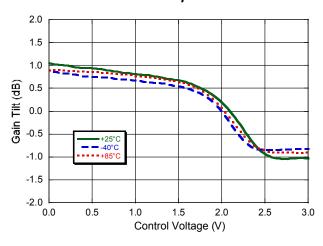
Gain Flatness Deviation From Best Fit Line @ +25°C



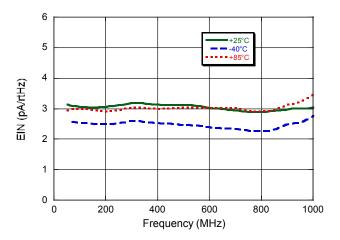
Gain Flatness Deviation From Best Fit Line @ -40°C

Gain Flatness Deviation From Best Fit Line

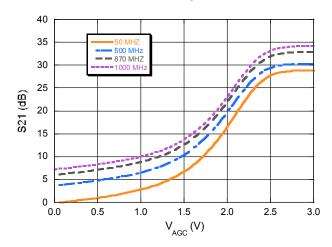
@ +85°C



Optical Node RF Amplifier 50 - 1000 MHz


Rev. V1

Typical Performance Curves


Gain Tilt Deviation from Average Tilt VAGC: 0V to 3V in 0.2 V Steps

Equivalent Input Noise @ Max Gain VAGC = 3V

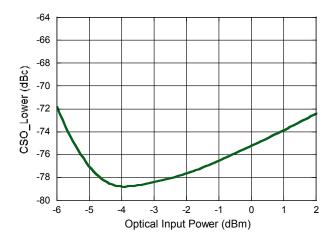
Receiver Gain vs. VAGC VAGC = 0V to 3V in 0.2V Steps

PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

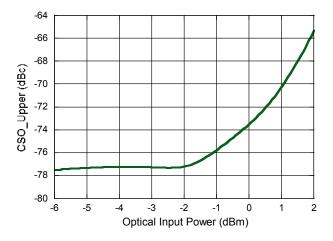
- North America Tel: 800.366.2266
 India Tel: +91.80.43537383
 Europe Tel: +353.21.244.6400
 China Tel: +86.21.2407.1588
- Visit www.macomtech.com for additional data sheets and product information.

Optical Node RF Amplifier 50 - 1000 MHz

Rev. V1


Typical Performance Curves:

79 Channels; NTSC Frequency Plan Pout = +22.5 dBmV/ch @ 55 MHz; +24 dBmV @ 550 MHz

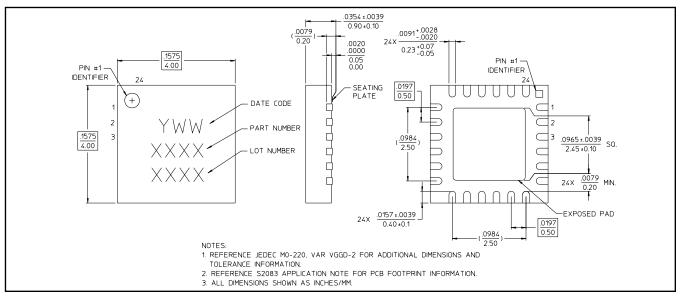

CTB vs. Optical Input Power

CSO_Lower vs. Optical Input Power

CSO_Upper vs. Optical Input Power

PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed

• North America Tel: 800.366.2266 • Europe Tel: +353.21.244.6400 • China Tel: +86.21.2407.1588


Visit www.macomtech.com for additional data sheets and product information.

Optical Node RF Amplifier 50 - 1000 MHz

Rev. V1

Lead Free 4 mm 24-lead PQFN[†]

[†] Reference Application Note 2083 for lead-free solder reflow recommendations. Meets JEDEC moisture sensitivity level 1 requirements. Plating is 100% matte tin over copper.