

SURMOUNT™ 8µM PIN Diodes RoHS Compliant

Rev. V2

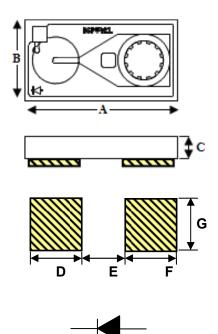
Features

- Surface Mount
- No Wirebonds Required
- Rugged Silicon-Glass Construction
- Silicon Nitride Passivation
- Polymer Scratch Protection
- · Low Parasitic Capacitance and Inductance
- High Average and Peak Power Handling
- RoHS Compliant

Description

This device is a silicon, glass PIN diode surmount chip fabricated with M/A-COM Technology Solutions' patented HMICTM process. This device features two silicon pedestals embedded in a low loss, low dispersion glass. The diode is formed on the top of one pedestal and connections to the backside of the device are facilitated by making the pedestal sidewalls electrically conductive. Selective backside metallization is applied producing a surface mount device. This vertical topology provides for exceptional heat transfer. The topside is fully encapsulated with silicon nitride and has an additional polymer layer for scratch and impact protection. These protective coatings prevent damage to the junction and the anode air-bridge during handling and assembly.

Applications


These packageless devices are suitable for moderate incident power applications, $\leq 10 \text{W/C.W.}$ or where the peak power is $\leq 52 \text{W}$, pulse width is $\leq 1 \mu \text{S}$, and duty cycle is $\leq 0.01 \%$. Their low parasitic inductance, 0.4 nH, and excellent RC constant, make these devices a superior choice for higher frequency switch elements when compared to their plastic package counterparts.

Absolute Maximum Ratings¹@ T_{AMB} = +25°C (unless otherwise specified)

Parameter	Absolute Maximum			
MADP-04213060	308	408	508	908
C.W. Incident Power dBm	+42 +44 +43 +			
Forward Current	250 mA			
Reverse Voltage	-100 V			
Operating Temperature	-55°C to +125°C			
Storage Temperature	-55°C to +150°C			
Junction Temperature	+175°C			
Mounting Temperature	+280°C for 10 seconds			

1. Exceeding these limits may cause permanent damage.

Commitment to produce in volume is not dual

DIM	INC	HES	мм		
DIN	MIN.	MAX.	MIN.	MAX.	
Α	0.040	0.042	1.025	1.075	
В	0.021	0.023	0.525	0.575	
С	0.004	0.008	0.102	0.203	
D	0.013	0.015	0.325	0.375	
Е	0.011	0.013	0.275	0.325	
F	0.013	0.015	0.325	0.375	
G	0.019	0.021	0.475	0.525	

Notes

- 1. Backside metal: 0.1 μM thick.
- 2. Yellow hatched areas indicate backside ohmic gold contacts.
- 3. All devices have the same outline dimensions (A to G).

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.

PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or restronger may be available.

- North America Tel: 800.366.2266 Europe Tel: +353.21.244.6400
- India Tel: +91.80.43537383
 China Tel: +86.21.2407.1588
 Visit www.macomtech.com for additional data sheets and product information.

SURMOUNT™ 8µM PIN Diodes **RoHS Compliant**

Rev. V2

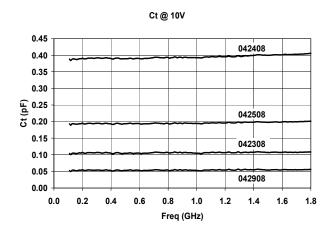
Electrical Specifications @ T_{AMB} = + 25 °C

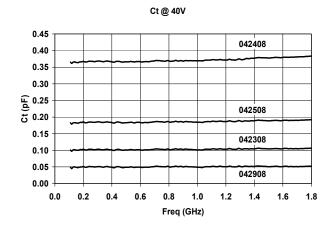
Downwoodow	Sumph of Conditions	lluite.	MADP-042308-13060		MADP-042508-13060		
Parameter	Symbol	Conditions	Units	Тур.	Max.	Тур.	Max.
Capacitance	C _⊤ 1,3	- 10V, 1 MHz ¹	pF	0.10	0.20	0.18	0.30
Capacitance	C _T ^{1,3}	- 10 V, 1 GHz ^{1,3}	pF	0.10		0.19	
Capacitance	C _T ^{1,3}	- 40 V, 1 MHz ¹	pF	0.09	0.20	0.18	0.30
Capacitance	C _T ^{1,3}	- 40 V, 1 GHz ^{1,3}	pF	0.10		0.18	
Resistance	R _S ^{2,3}	+ 20 mA, 1 GHz ^{2,3}	Ω	1.38		0.97	
Resistance	R _S ^{2,3}	+ 50 mA, 1 GHz ^{2,3}	Ω	1.18		0.87	
Forward Voltage	V _F	+ 10 mA	V	0.85	1.00	0.82	1.00
Reverse Leakage Current	I _R	-100V	μA		10		10
Input Third Order Intercept Point	IIP ³	F 1= 1000 MHz F2 = 1010 MHz Input Power = +20 dBm I bias = + 20 mA	dBm	73		77	
C.W. Thermal Resistance	θ		°C/W	145		115	
Lifetime	T _L	+10 mA / -6 mA (50% - 90% V)	nS	280		310	

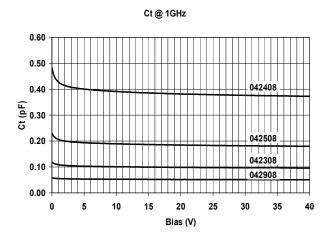
Parameter Symbol Conditions	Units	MADP-042408-13060 MADP-042908-13060			908-13060		
	Symbol	Conumons	Units	Тур.	Max.	Тур.	Max.
Capacitance	C _T ^{1,3}	- 10 V, 1 MHz ¹	pF	0.38	0.50	0.05	0.15
Capacitance	C _T ^{1,3}	- 10 V, 1 GHz ^{1,3}	pF	0.39		0.05	
Capacitance	C _T ^{1,3}	- 40 V, 1 MHz ¹	pF	0.36	0.50	0.04	0.15
Capacitance	C _T ^{1,3}	- 40 V, 1 GHz ^{1,3}	pF	0.37		0.05	
Resistance	R _S ^{2,3}	+ 20 mA, 1 GHz ^{2,3}	Ω	0.67		3.63	
Resistance	R _S ^{2,3}	+ 50 mA, 1 GHz ^{2,3}	Ω	0.61		3.02	
Forward Voltage	V _F	+ 10 mA	V	0.80	1.00	0.91	1.00
Reverse Leakage Current	I _R	-100V	μA		10		10
Input Third Order Intercept Point	IIP ³	F 1= 1000 MHz F2 = 1010 MHz Input Power = +20 dBm I bias = + 20 mA	dBm	81		66	
C.W. Thermal Resistance	θ^4		°C/W	100		185	
Lifetime	TL	+10 mA / -6 mA (50% - 90% V)	nS	380		230	

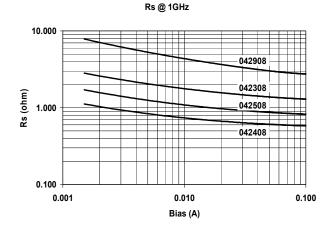
- Total capacitance, C_T , is equivalent to the sum of junction capacitance C_T , and parasitic capacitance, C_T , is equivalent to the sum of junction capacitance, C_T , and parasitic capacitance, C_T , is equivalent to the sum of junction capacitance, C_T , and parasitic capacitance, C_T , is equivalent to the sum of junction capacitance, C_T , and parasitic capacitance, C_T , and C_T , are a constant and C_T , are a constant and C_T , and C_T , are a constant and C_T , and C_T , are a constant and C_T , and C_T , are a constant and C_T , and C_T , are a constant and C_T , and C_T , are a constant and C_T , and C_T , are a constant and C_T , are a constant and C_T , and C_T , are a constant and C_T , and C_T , are a constant and C_T , are a constant and C_T , and C_T , are a constant and C_T , and C_T , are a constant and C_T , are a constant and C_T , and C_T , are a consta
- Series resistance R_S is equivalent to the total diode resistance : $R_S = R_J$ (Junction Resistance) + R_C (Ohmic Resistance)
- R_S and C_T are measured on an HP4291A Impedance Analyzer with die mounted in an ODS-1134 package.
- Theta (θ) is measured with the die mounted in an ODS-1134 package.

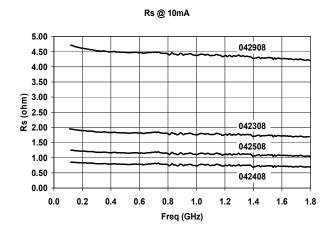
Specifications Subject to Change Without Notice.

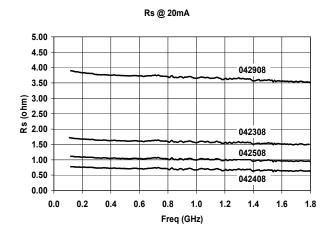

and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples Commitment to produce in volume is not duarinteed.




SURMOUNT™ 8µM PIN Diodes RoHS Compliant


Rev. V2


Typical Performance @ T_{AMB} = +25 °C



typical. Mechanical outline has been fixed. Engineering samples Commitment to produce in volume is not quartificed.

- North America Tel: 800.366.2266 Europe Tel: +353.21.244.6400
- India Tel: +91.80.43537383 China Tel: +86.21.2407.1588
 Visit www.macomtech.com for additional data sheets and product information.

SURMOUNT™ 8µM PIN Diodes RoHS Compliant

Rev. V2

Handling Procedures

All semiconductor chips should be handled with care to avoid damage or contamination from perspiration and skin oils. The use of plastic tipped tweezers or vacuum pickups is strongly recommended for individual components. Bulk handling should insure that abrasion and mechanical shock are minimized.

Bonding Techniques

Attachment to a circuit board is made simple through the use of surface mount technology. Mounting pads are conveniently located on the bottom surface of these devices and are removed from the active junction locations. These devices are well suited for solder attachment onto hard and soft substrates. The use of 80Au/20Sn, or RoHS compliant solders is recommended. For applications where the average power is ~1W, conductive silver epoxy may also be used. Cure per manufacturers recommended time and temperature. Typically 1 hour at 150°C.

When soldering these devices to a hard substrate, hot gas die bonding is preferred. A vacuum tip pick-up tool and a force of 60 to100 grams applied to the top surface of the device is recommended. When soldering to soft substrates, such as Duroid, it is recommended to use a soft solder at the circuit board to mounting pad interface. Position the die so that its mounting pads are aligned with the circuit board mounting pads. While applying a downward force perpendicular to the top surface of the die, apply heat near the circuit trace and diode mounting pad. The solder connection to the two pads should not be made one at a time as this will create unequal heat flow and thermal stress to the part. Solder reflow should not be performed by causing heat to flow through the top—surface of the die to the back. Since the HMIC glass is transparent, the edges of the mounting pads can be visually inspected through the die after attachment is completed.

Typical re-flow profiles for Sn60/Pb40 and RoHS compliant solders is provided in <u>Application Note M538</u>, "Surface Mounting Instructions" and can viewed on the MA-COM Tech"s website @ www.macomtech.com

Ordering Information

The MADP-042XX8-13060 series of surmounts may be ordered in either gel packs or tape and reeled by adding the appropriate suffix per the table below. Tape and reel dimensions are provided in Application Note M513 located on the M/A-COM website @ www.macomtech.com.

Part Number				
Gel Pack	Tape and Reel (Pocket Tape)			
MADP-042308-13060G	MADP-042308-13060P			
MADP-042408-13060G	MADP-042408-13060P			
MADP-042508-13060G	MADP-042508-13060P			
MADP-042908-13060G	MADP-042908-13060P			

typical. Mechanical outline has been fixed. Engineering samples

Commitment to produce in volume is not dule

India Tel: +91.80.43537383
 China Tel: +86.21.2407.1588
 Visit www.macomtech.com for additional data sheets and product information.