

Single Driver for GaAs FET Switches and Attenuators

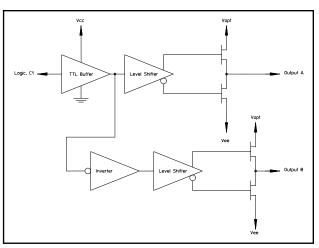
Rev. V5

Features

- High Speed CMOS Technology
- Single Channel
- Positive Voltage Control
- Low Power Dissipation
- Low Cost Plastic SOIC-8 Package
- 100% Matte Tin Plating over Copper
- Halogen-Free "Green" Mold Compound
- 260°C Reflow Compatible
- MADRCC0006 is RoHS* Compliant Version of SWD-109

Description

The MADRCC0006 is a single channel driver used to translate TTL control inputs into gate control voltages for GaAs FET microwave switches and attenuators. High speed analog CMOS technology is utilized to achieve low power dissipation at moderate to high speeds, encompassing most microwave switching applications. The output HIGH level is optionally 0 to +2.0V (relative to GND) to optimize the intermodulation products of the control devices at low frequencies.


Ordering Information¹

Commitment to produce in volume is not g

Part Number	Package
MADRCC0006	SOIC-8
MADRCC0006TR	1000 piece reel of SOIC-8
MADR-0009151-000DIE	Die ²

- Reference Application Note M513 for reel size information.
- Die sales are available in waffle packs in increments of 100 pieces.

Functional Schematic

Pin Configuration³

Pin No.	Function
1	Output A
2	GND
3	Vcc
4	C1, Logic
5	Vee
6	Vopt
7	GND
8	Output B

 The bottom of the die should be isolated for part number MADR-009151-000DIE.

^{*} Restrictions on Hazardous Substances, European Union Directive 2002/95/EC.

[•] North America Tel: 800.366.2266 • Europe Tel: +353.21.244.6400

[•] India Tel: +91.80.4155721 • China Tel: +86.21.2407.1588

Visit www.macomtech.com for additional data sheets and product information.

Single Driver for GaAs FET Switches and Attenuators

Rev. V5

Guaranteed Operating Ranges

Symbol	Parameter ⁴ Unit Min.		Min.	Тур.	Max.
Vcc	Positive DC Supply Voltage	y Voltage V 4.5 5.0		5.5	
V _{EE}	Negative DC Supply Voltage	y Voltage V -8.5 -5.0 -4.5		-4.5	
V _{OPT} ⁵	Optional DC Output Supply Voltage	DC Output Supply Voltage V 0 1.0		2.0	
V _{OPT} -V _{EE}	Negative Supply Voltage Range	oly Voltage Range V 4.5 6.5 11.		11.0	
V _{CC} -V _{EE}	Positive to negative Supply Range	V	9.0	10.0	14.0
T _A	Operating Ambient temperature	re °C -40 +25 +85		+85	
I _{OH}	DC Output Current - High	mA	_	_	-1.0
I _{OL}	DC Output Current - Low	mA	_	_	1.0
T_{rise}, T_{fall}	Maximum Input Rise or Fall Time	ns	_	_	500

^{4.} All voltages are relative to GND.

DC Characteristics over Guaranteed Operating Range

Symbol	Parameter	Test Conditions		Units	Min.	Тур.	Max.
V _{IH}	Input High Voltage	Guaranteed High Input Voltage		V	2.0	_	_
V _{IL}	Input Low Voltage	Guaranteed Low Input Voltage		V	_	_	0.8
V _{OH}	Output High Voltage	I _{OH} = -1 mA	V _{EE} = Max	V	V _{OPT} -0.1	_	_
V _{OL}	Output Low Voltage	I _{OL} = 1 mA	V _{EE} = Max	V	_	_	V _{EE} +0.1
I _{IN}	Input Leakage Current	$V_{IN} = V_{CC}$ or GND	V _{EE} = Min	μΑ	_	.01	10
Icc	Quiescent Supply Current	V _{CC} = Max V _{OPT} = Min or Max	$V_{EE} = Min$ $V_{IN} = V_{CC} \text{ or GND}$	μΑ	_	_	100
ΔI _{CC}	Additional Supply Current, per TTL Input pin	V _{CC} = Max	V _{IN} = V _{CC} -2.1V	mA	_	_	1.0

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Commitment to produce in volume is not g

Silicon Integrated Circuits are sensitive electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

Truth Table

Input	Outputs		
C1	Α	В	
Logic "0"	V _{EE}	V _{OPT}	
Logic "1"	V _{OPT}	V _{EE}	

Solutions has under development. Performance is based on engineering tests. Specifications are

typical. Mechanical outline has been fixed. Engineering samples

• India Tel: +91.80.4155721

• North America Tel: 800.366.2266 • Europe Tel: +353.21.244.6400

• China Tel: +86.21.2407.1588 Visit www.macomtech.com for additional data sheets and product information.

^{5.} V_{OPT} is grounded for most applications. To improve the intermodulation performance and the 1 dB compression point of GaAs control devices at low frequencies, VOPT can be increased to between 1.0 and 2.0V. The nonlinear characteristics of the GaAs control devices will approximate performance at 500 MHz. It should be noted that the control current is on the GaAs MMICs will increase when positive controls are applied.

Single Driver for GaAs FET Switches and Attenuators

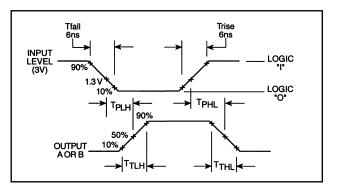
Rev. V5

AC Characteristics Over Guaranteed Operating Range⁶

Symbol	Parameter	-55 to +25°C	<u><</u> +85°C	<u><</u> +125°C	Unit
T _{PLH}	Propagation Delay	22	25	30	ns
T _{PHL}	Propagation Delay	Propagation Delay 22 25		30	ns
T _{TLH}	Output Rising Transition Time	Output Rising Transition Time 9.0 9.0 9.0		9.0	ns
T _{THL}	Output Falling Transition Time	Output Falling Transition Time 8.0 8.0 8.0		ns	
T _{skew}	Delay Skew, Output A to Output B	Delay Skew, Output A to Output B 4.0 4.0 4.0		ns	
C _{IN}	Input Capacitance	Input Capacitance 10 10 10		pF	
C_{PDC}	Power Dissipation Capacitance ⁷	Power Dissipation Capacitance ⁷ 10 10 10		pF	
C _{PDE}	Power Dissipation Capacitance ⁷	140 140 140 pF		pF	

^{6.} $V_{CC} = 4.5V$, $V_{OPT} - V_{EE} = min or max$, $V_{OPT} = 0V$, $C_L = 25 pF$, Trise, Tfall = 6ns. These conditions represent the worst case for slow delays.

Absolute Maximum Ratings^{8,9,10}


Symbol	Parameter Min Max		Max	Unit
V _{CC}	Positive DC Supply Voltage -0.5 7.0		7.0	V
V _{EE}	Negative DC Supply Voltage	,		V
V _{OPT}	Optional DC Output Supply Voltage			٧
V _{OPT} -V _{EE}	Output to Negative Supply Voltage Range			٧
V _{CC} -V _{EE}	Positive to Negative Supply -0.5 14.0 Voltage Range		14.0	٧
Vı	DC Input Voltage	-0.5 V _{cc} +0.5		V
I _I	DC Input Current	-25 25 mA		mA
Vo	DC Output Voltage V _{EE} - V _{OPT} 0.5 +0.5			V
P _D ¹¹	Power Dissipation in Still Air — 500		mW	
Vo	DC Output Current	-25 25 mA		mA
T _{STG}	Storage Temperature	-65 150 °C		°C

8. All voltages are referenced to GND. All inputs and outputs incorporate latch-up protection structures.

11. Derate -7 mW/°C from 65°C to 85°C.

typical. Mechanical outline has been fixed. Engineering samples in Commitment to produce in volume is not guaranteed.

Switching Waveforms

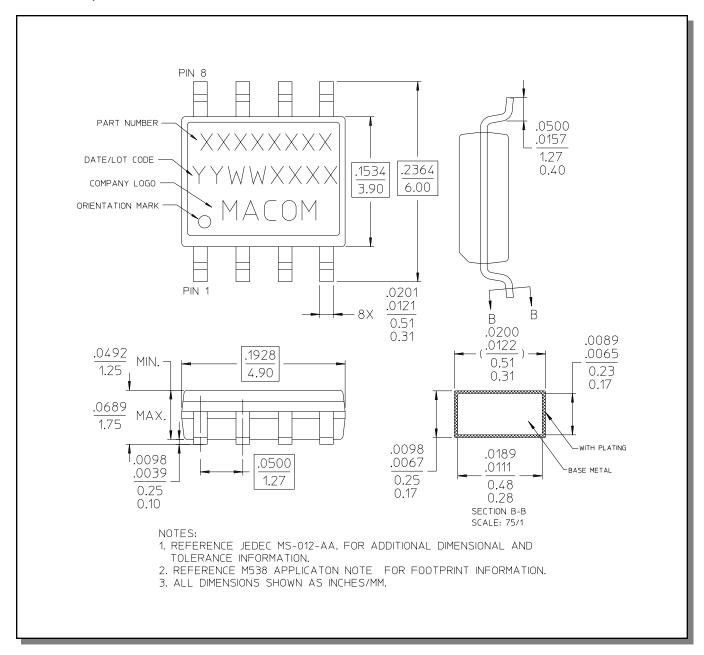
Solutions has under development. Performance is based on engineering tests. Specifications are

• India Tel: +91.80.4155721 Visit www.macomtech.com for additional data sheets and product information.

• North America Tel: 800.366.2266 • Europe Tel: +353.21.244.6400 • China Tel: +86.21.2407.1588

^{7.} Total Power Dissipation is calculated by the following formula: $PD = V_{CC}^2 fC_{PDC} + (V_{OPT} - V_{EE})^2 fC_{PDE}$

Exceeding any one or combination of these limits may cause permanent damage to this device.


^{10.} M/A-COM does not recommend sustained operation near these survivability limits.

Single Driver for GaAs FET Switches and Attenuators

Rev. V5

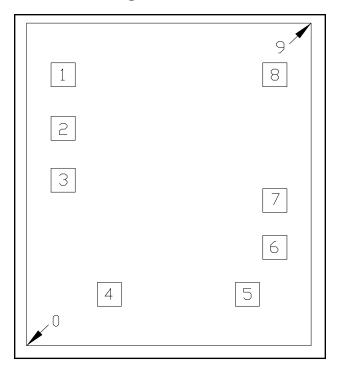
Lead-Free, SOIC-8[†]

Reference Application Note M538 for lead-free solder reflow recommendations.

Solutions has under development. Performance is based on engineering tests. Specifications are

typical. Mechanical outline has been fixed. Engineering samples and Commitment to produce in volume is not guaranteed.

• India Tel: +91.80.4155721 Visit www.macomtech.com for additional data sheets and product information.


[•] North America Tel: 800.366.2266 • Europe Tel: +353.21.244.6400

Single Driver for GaAs FET Switches and Attenuators

Rev. V5

Outline Drawing

Pad Configuration^{12,13} Die Size: 1080 x 1240 µm (nominal)

Pad No.	X (µm) nominal	Y (µm) nominal	Pad Size (μm)
0	0	0	Lower left edge of die
1	138	1042	92 x 92
2	138	835.5	92 x 92
3	138	636.75	92 x 92
4	313.75	198	92 x 92
5	838.5	198	92 x 92
6	942	378	92 x 92
7	942	558	92 x 92
8	942	1042	92 x 92
9	1080	1240	Upper right edge of die

- 12. All X,Y dimensions are at bond pad center.
- 13. Die thickness is 9.5 mils.

Solutions has under development. Performance is based on engineering tests. Specifications are

typical. Mechanical outline has been fixed. Engineering samples in Commitment to produce in volume is not guaranteed.

[•] India Tel: +91.80.4155721