GaN on SiC HEMT Pulsed Power Transistor Production V1 250W Peak, 1200-1400 MHz, 300 s Pulse, 10\% Duty 18 Aug 11

Features

- GaN depletion mode HEMT microwave transistor
- Internally matched
- Common source configuration
- Broadband Class AB operation
- RoHS Compliant
- +50V Typical Operation
- MTTF of 114 years (Channel Temperature $<200^{\circ} \mathrm{C}$)

Applications

- L-Band pulsed radar

Product Description

The MAGX-001214-250L00 is a gold metalized matched Gallium Nitride (GaN) on Silicon Carbide RF power transistor optimized for pulsed L-Band radar applications. Using state of the art wafer fabrication processes, these high performance transistors provide high gain, efficiency, bandwidth, ruggedness over a wide bandwidth for today's demanding application needs. High breakdown voltages allow for reliable and stable operation in extreme mismatched load conditions unparalleled with older semiconductor technologies.

Typical RF Performance at Pout = 250W Peak

Freq $(\mathbf{M H z})$	Pin (\mathbf{W})	Gain $(\mathbf{d B})$	Slope $(\mathbf{d B})$	Id (\mathbf{A})	Eff $(\%)$	Avg-Eff $(\%)$	RL $(\mathbf{d B})$	Droop $(\mathbf{d B})$
1200	4.4	17.6	-	8.0	62.2	-	-13.3	0.4
1250	4.0	18.0	-	8.2	60.4	-	-19.2	0.5
1300	4.1	17.8	-	8.7	57.1	-	-22.6	0.6
1350	4.4	17.5	-	9.1	54.6	-	-19.2	0.7
1400	4.4	17.6	0.5	9.0	55.0	57.9	-19.8	0.6

Ordering Information

MAGX-001214-250L00 250W GaN Power Transistor MAGX-001214-SB1PPR Evaluation Fixture

Supply Voltage (V_{DD})	+65V
Supply Voltage (VGS)	-8 to -2V
Supply Current ($\mathrm{Idmax}^{\text {) }}$	8.8 Apk
Input Power (PiN)	+40 dBm
Absolute Max. Junction/Channel Temp	$200{ }^{\circ} \mathrm{C}$
MTTF ($\mathrm{T}^{\prime}<200^{\circ} \mathrm{C}$)	114 years
Pulsed Power Dissipation at $85^{\circ} \mathrm{C}$	192 Wpk
Thermal Resistance, $\left(\mathrm{Tj}=70^{\circ} \mathrm{C}\right)$ $V_{D D}=50 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=250 \mathrm{~mA}$, Pout $=250 \mathrm{~W}$ 300us Pulse / 10\% Duty	$0.60^{\circ} \mathrm{C} / \mathrm{W}$
Operating Temp	-40 to $+95^{\circ} \mathrm{C}$
Storage Temp	-65 to $+150^{\circ} \mathrm{C}$
Mounting Temperature	See solder reflow profile
ESD Min. - Machine Model (MM)	50 V
ESD Min. - Human Body Model (HBM)	>250V
MSL Level	MSL1

(1) Operation of this device above any one of these parameters may cause permanent damage.
(2) Channel temperature directly affects a device's MTTF. Channel temperature should be kept as low as possible to maximize lifetime
(3) For saturated performance it recommended that the sum of $\left(3^{*} \mathrm{Vdd}+\mathrm{abs}(\mathrm{Vgg})\right)<175$

Parameter	Test Conditions	Symbol	Min	Typ	Max	Units
DC CHARACTERISTICS						
Drain-Source Leakage Current	$V_{G S}=-8 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=175 \mathrm{~V}$	$\mathrm{l}_{\text {DS }}$	-	0.4	12	mA
Gate Threshold Voltage	$\mathrm{V}_{\mathrm{DS}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=30 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$	-5	-3.1	-2	V
Forward Transconductance	$\mathrm{V}_{\mathrm{DS}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=7.0 \mathrm{~mA}$	G_{M}	5.0	7.7	-	S
DYNAMIC CHARACTERISTICS						
Input Capacitance	Not applicable-Input internally matched	$\mathrm{C}_{\text {ISS }}$	N/A	N/A	N/A	pF
Output Capacitance	$\mathrm{V}_{\mathrm{DS}}=50 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-8 \mathrm{~V}, \mathrm{~F}=1 \mathrm{MHz}$	Coss	-	22	-	pF
Feedback Capacitance	$\mathrm{V}_{\mathrm{DS}}=50 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-8 \mathrm{~V}, \mathrm{~F}=1 \mathrm{MHz}$	$\mathrm{C}_{\text {RSS }}$	-	2.2	-	pF

2

Electrical Specifications: $\mathrm{T}_{\mathrm{C}}=\mathbf{2 5} \pm 5^{\circ} \mathrm{C}$ (Room Ambient)

Parameter	Test Conditions	Symbol	Min	Typ	Max	Units
RF FUNCTIONAL TESTS ($\mathrm{V}_{\mathrm{DD}}=50 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=250 \mathrm{~mA}, 300 \mathrm{us} / 10 \%$ duty, $\mathbf{1 2 0 0 - 1 4 0 0 \mathrm { MHz }}$)						
Input Power	Pout = 250W Peak (25W avg)	PIN	-	4.2	5.6	Wpk
Power Gain	Pout = 250W Peak (25W avg)	G_{P}	16.5	17.7	-	dB
Drain Efficiency	Pout = 250W Peak (25W avg)	η_{D}	50	57.9	-	\%
Load Mismatch Stability	Pout = 250W Peak (25W avg)	VSWR-S	5:1	-	-	-
Load Mismatch Tolerance	Pout = 250W Peak (25W avg)	VSWR-T	10:1	-	-	-

Test Fixture Impedance

$\mathbf{F}(\mathbf{M H z})$	$\mathbf{Z}_{\mathbf{I F}} \mathbf{(\Omega)}$	$\mathbf{Z}_{\mathbf{O F}}(\mathbf{\Omega})$
1200	$3.6-\mathrm{j} 5.3$	$3.5+\mathrm{j} 0.7$
1250	$3.3-\mathrm{j} 4.9$	$3.7+\mathrm{j} 0.2$
1300	$3.2-\mathrm{j} 4.4$	$3.5-\mathrm{j} 0.3$
1350	$3.2-\mathrm{j} 4.0$	$3.2-\mathrm{j} 0.6$
1400	$3.2-\mathrm{j} 3.6$	$2.7-\mathrm{j} 0.7$

3

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298 Visit www.macomtech.com for additional data sheets and product information.

GaN on SiC HEMT Pulsed Power Transistor Production V1 250W Peak, $1200-1400 \mathrm{MHz}, 300 \mu \mathrm{~s}$ Pulse, 10% Duty
 18 Aug 11

RF Power Transfer Curve (Output Power Vs. Input Power)

RF Power Transfer Curve (Drain Efficiency Vs. Output Power)

4

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.

PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples nd/f tes at tar ay br ave il-

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298 Visit www.macontech.com for additional data sheets and product information.

Test Fixture Circuit Dimensions

Test Fixture Assembly

5

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.

PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples ndy) tes ditar ay br avail-

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298 Visit www.macomtech.com for additional data sheets and product information.

```
GaN on SiC HEMT Pulsed Power Transistor
Production V1
250W Peak, \(1200-1400 \mathrm{MHz}, 300 \mu \mathrm{~s}\) Pulse, \(10 \%\) Duty
18 Aug 11
```


Outline Drawing

CORRECT DEVICE SEQUENCING

TURNING THE DEVICE ON

1. Set V_{GS} to the pinch-off $\left(\mathrm{V}_{\mathrm{P}}\right)$, typically -5 V
2. Turn on V_{DS} to nominal voltage (50 V)
3. Increase $\mathrm{V}_{G S}$ until the I_{DS} current is reached
4. Apply RF power to desired level

TURNING THE DEVICE OFF

1. Turn the RF power off
2. Decrease $V_{G S}$ down to V_{P}
3. Decrease $V_{D S}$ down to $0 V$
4. Turn off V_{GS}
