

GaAs SP4T 2.5 V High Power Switch DC - 3.0 GHz

Rev. V1

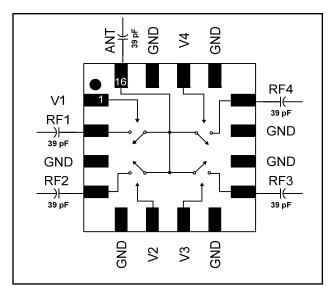
Features

- Low Voltage Operation: 2.5 V
- Low Harmonics: < -65 dBc at +34 dBm & 1 GHz
- Low Insertion Loss: 0.65 dB @ 1 GHz
- High Isolation: 23 dB @ 2 GHz
- 0.5 micron GaAs PHEMT Process
- Lead-Free 4mm 16-lead PQFN Package
- 100% Matte Tin Plating over Copper
- Halogen-Free "Green" Mold Compound
- 260°C Reflow Compatible
- RoHS* Compliant Version of MASWSS0118

Description

M/A-COM's MASW-008566 is a GaAs PHEMT MMIC single pole four throw (SP4T) high power switch in a low cost 4 mm 16-lead PQFN package. The MASW-008566 is ideally suited for applications where high power, low control voltage, low insertion loss, high isolation, small size, and low cost are required.

Typical applications are for GSM and DCS handset systems that connect separate transmit and receive functions to a common antenna, as well as other handset and related applications. This part can be used in all systems operating up to 3.0 GHz requiring high power at low control voltage.


The MASW-008566 is fabricated using a 0.5 micron gate length GaAs PHEMT process. The process features full passivation for performance and reliability.

Ordering Information^{1,2}

Part Number	Package
MASW-008566-TR3000	3000 piece reel
MASW-008566-001SMB	Sample Board

- 1. Reference Application Note M513 for reel size information.
- 2. All sample boards include 5 loose parts.

Functional Schematic

Pin Configuration

Pin No.	Pin Name Description			
1	V1	Control 1		
2	RF1	RF Port 1		
3	GND	RF Ground		
4	RF2	RF Port 2		
5	GND	RF Ground		
6	V2	Control 2		
7	V3	Control 3		
8	GND	RF Ground		
9	RF3	RF Port 3		
10	GND	RF Ground		
11	GND	RF Ground		
12	RF4	RF Port 4		
13	GND	RF Ground		
14	V4	Control 4		
15	GND	RF Ground		
16	ANT	Antenna Port		
17	Paddle ³	RF Ground		

3. The exposed pad centered on the package bottom must be connected to RF and DC ground.

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.

PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology.

PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

^{*} Restrictions on Hazardous Substances, European Union Directive 2002/95/EC.

[•] North America Tel: 800.366.2266 / Fax: 978.366.2266

Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
 Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

Visit www.macomtech.com for additional data sheets and product information.

GaAs SP4T 2.5 V High Power Switch DC - 3.0 GHz

Rev. V1

Electrical Specifications: $T_A = 25$ °C, $Z_0 = 50 \Omega^4$

Parameter	Test Conditions	Units	Units Min.		Max.
Insertion Loss ⁵	DC – 1 GHz 1 – 2 GHz 2 - 3 GHz	dB dB dB	_	0.65 0.80 1.00	0.85 1.00 —
Isolation	DC – 1 GHz 1 – 2 GHz 2 - 3 GHz	dB dB dB	27 21 —	29.0 23.0 18.5	_ _ _
Return Loss	DC – 3 GHz	dB	_	20	_
IP3	Two Tone +26 dBm, 5 MHz Spacing, > 50 MHz $V_C = 0 \text{ V} / 2.5 \text{ V}$	dBm	_	57	_
IP2	Two Tone +26 dBm, 5 MHz Spacing, > 50 MHz $V_C = 0 \text{ V} / 2.5 \text{ V}$		_	81	_
P.1dB	V _C = 0 V / 2.5 V		_	38	_
2 nd Harmonic	1 GHz, P_{IN} = +34 dBm, V_{C} = 0 V / 2.5 V		_	-80	-71
3 rd Harmonic	1 GHz, P_{IN} = +34 dBm, V_{C} = 0 V / 2.5 V		_	-68	-65
Trise, Tfall	10% RF to 90% RF, 90% to 10% RF, $V_C = 0 \text{ V} / 2.5 \text{ V}$		_	0.2	_
Ton, Toff	50% control to 90% RF, 50% control to 10% RF, V_C = 0 V / 2.5 V		_	0.2	_
Transients		mV	_	35	_
Control Current	V _C = 0 V / 2.5 V, 34 dBm	μA	_	10	50

- 4. External DC blocking capacitors are required on all RF ports.
- 5. Insertion Loss can be optimized by varying the DC blocking capacitor value, e.g. 1000 pF for 100 500 MHz, 39 pF for 0.5 3 GHz.

Absolute Maximum Ratings ^{6,7}

Parameter	Absolute Maximum		
Input Power (0.5 - 3.0 GHz, 2.5 V Control)	+38 dBm		
Voltage	± 8.5 volts		
Operating Temperature	-40°C to +85°C		
Storage Temperature	-65°C to +150°C		

- 6. Exceeding any one or combination of these limits may cause permanent damage to this device.
- M/A-COM does not recommend sustained operation near these survivability limits.

Truth Table 8,9

V1	V2	V3	V4	ANT- RF1	ANT- RF2	ANT- RF3	ANT- RF4
1	0	0	0	On	Off	Off	Off
0	1	0	0	Off	On	Off	Off
0	0	1	0	Off	Off	On	Off
0	0	0	1	Off	Off	Off	On

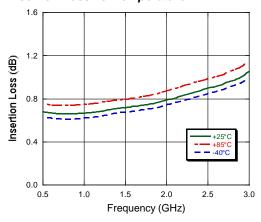
- Differential voltage, V (state 1) -V (state 2), must be 2.5 V minimum.
- 9. 0 = -5 V to +2.5 V, 1 = -2.5 V to +5 V

PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

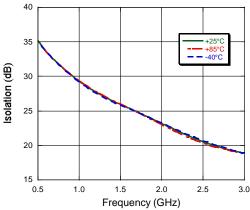
[•] North America Tel: 800.366.2266 / Fax: 978.366.2266

Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
 Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

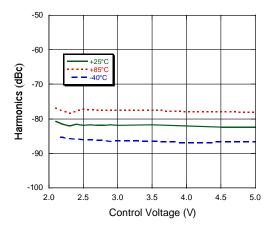
[•] Asia/Pacific 16I: 81.44.844.8296 / Fax: 81.44.844.8298 Visit www.macomtech.com for additional data sheets and product information.

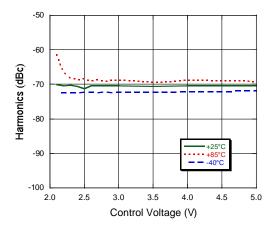


GaAs SP4T 2.5 V High Power Switch DC - 3.0 GHz


Rev. V1

Typical Performance Curves


Insertion Loss vs. Temperature


Isolation vs. Temperature

1 GHz 2nd Harmonic Rejection

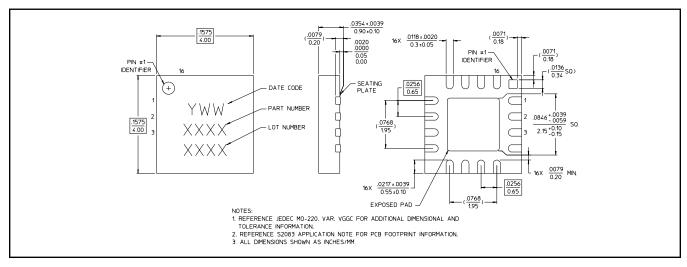
1 GHz 3rd Harmonic Rejection

PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

• North America Tel: 800.366.2266 / Fax: 978.366.2266

• Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.


M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

GaAs SP4T 2.5 V High Power Switch DC - 3.0 GHz

Rev. V1

Lead-Free 4 mm 16-Lead PQFN[†]

† Reference Application Note M538 for lead-free solder reflow recommendations. Meets JEDEC moisture sensitivity level 1 requirements.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

[•] North America Tel: 800.366.2266 / Fax: 978.366.2266

[•] Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.