MASWSS0091

GaAs SP6T 2.5 V High Power Switch Dual / Tri / Quad-Band GSM Applications

Rev. V7

Features

- Supplied as Known Good Die
- Dual/tri/quad-band GSM/GPRS/EDGE
- Low Voltage: 2.5V Operation
- Low Harmonics: -72 dBc at +35 dBm & 1 GHz
- Low Insertion Loss: 0.5 dB at 1 GHzHigh Tx-Rx Isolation: 38 dB at 2 GHz

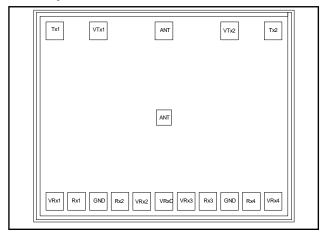
Description

M/A-COM's MASWSS0091 is a GaAs PHEMT MMIC single pole six throw (SP6T) high power switch die. The MASWSS0091 is ideally suited for applications where high power, low control voltage, low insertion loss, high isolation, small size and low cost are required. The MASWSS0091 is designed for dual-, tri-, and quad-band GSM and DCS/PCS handset systems that connect separate transmit and receive functions to a common antenna, and can be used in all systems operating up to 2.5 GHz requiring high power at low control voltage.

The MASWSS0091 is fabricated using a 0.5 micron gate length GaAs PHEMT process. The process features full passivation for performance and reliability.

Ordering Information ¹

Part Number	Package				
MASWSS0091SMB	Sample Test Board				
MASWSS0091-DIE	Separated die on Grip Ring				


^{1.} Die quantity varies.

Absolute Maximum Ratings ²

Parameter	Absolute Maximum			
Input Power (0.5 - 2.5 GHz, 2.5V Control)	+38 dBm			
Voltage	±8.5 volts			
Operating Temperature	-40°C to +85°C			
Storage Temperature	-65°C to +150°C			

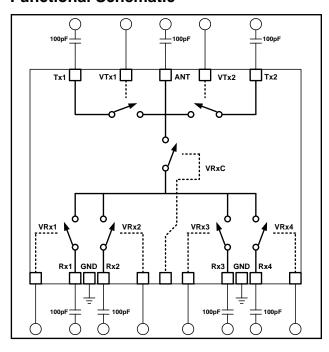
^{2.} Exceeding any one or combination of these limits may cause permanent damage to the device.

Die Layout

Pad Layout

PAD Name	Description					
Tx1	Tx1 Port					
VTx1	Tx1 Control					
ANT	Antenna Port					
VTx2	Tx2 Control					
Tx2	Tx2 Port					
VRx4	Rx4 Control					
Rx4	Rx4 Port					
GND	Ground					
Rx3	Rx3 Port Rx3 Control Rx Common Control Rx2 Control					
VRx3						
VRxC						
VRx2						
Rx2	Rx2 Port					
GND	Ground Rx1 Port					
Rx1						
VRx1	Rx1 Control					
ANT	Redundant ANT Pad					

GaAs SP6T 2.5 V High Power Switch Dual / Tri / Quad-Band GSM Applications


Rev. V7

Electrical Specifications: $T_A = 25$ °C, Vc = 0V/2.5V, $Z_0 = 50$ Ohms³

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Tx Insertion Loss ⁴	0.5 - 1 GHz 1 - 2 GHz	dB dB	_	0.5 0.65	0.7 0.9
Rx Insertion Loss ³	0.5 - 1 GHz 1 - 2 GHz	dB dB	_	1.0 1.3	1.2 1.6
Tx to Rx Isolation	0.5 - 1 GHz 1 - 2 GHz	dB dB	40 —	45 38	_
Tx to Tx Isolation	0.5 - 1 GHz 1 - 2 GHz	dB dB	22 —	26 17	_
Return Loss	0.5 - 2.5 GHz	dB	_	20	_
Tx P0.1dB	1 GHz	dBm	_	41	_
Rx P1dB	1 GHz	dBm	_	25	_
2nd Harmonic	1 GHz, P _{IN} = +35 dBm, 100% Duty Cycle	dBc	_	-78	-67
3rd Harmonic	1 GHz, P _{IN} = +35 dBm, 100% Duty Cycle	dBc	_	-72	-67
Trise, Tfall	10% to 90% RF, 90% to 10% RF	μS	_	0.2	_
Ton, Toff	50% control to 90% RF, and 50% control to 10% RF	μS	_	0.2	_
Transients	In Band	mV	_	70	_
Control Current	_	μA	_	20	80

- 3. External DC blocking capacitors are required on all RF ports.
- 4. Insertion loss can be optimized by varying the DC blocking capacitor value, e.g. 100 pF for 0.5 GHz 2.0 GHz.

Functional Schematic

Qualification

Qualified to M/A-COM specification REL-201, Process Flow -2.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

typical. Mechanical outline has been fixed. Engineering samples Commitment to produce in volume is not guardinated.

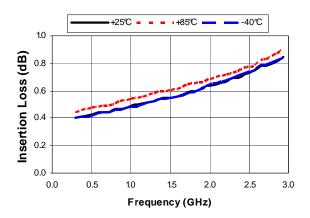
Visit www.macomtech.com for additional data sheets and product information.

• North America Tel: 800.366.2266 • Europe Tel: +353.21.244.6400

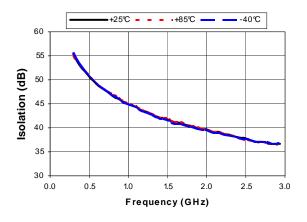
• India Tel: +91.80.43537383

• China Tel: +86.21.2407.1588

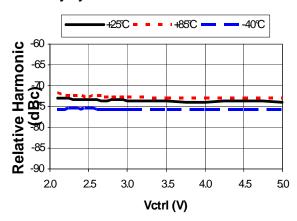
MASWSS0091

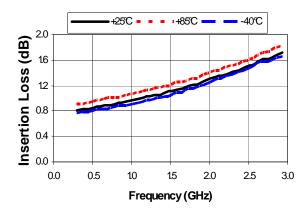


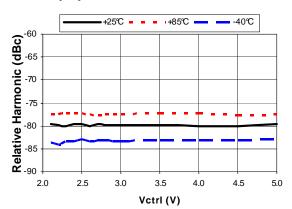
GaAs SP6T 2.5 V High Power Switch Dual / Tri / Quad-Band GSM Applications


Rev. V7

Typical Performance Curves


TX Insertion Loss


TX - RX Isolation


3rd Harmonic vs. Vctrl @ 1 GHz, Pin = +35 dBm, 100% Duty Cycle

RX Insertion Loss

2nd Harmonic vs. Vctrl @ 1 GHz, Pin = +35 dBm, 100% Duty Cycle

typical. Mechanical outline has been fixed. Engineering samples Commitment to produce in volume is not guaranteed.

• India Tel: +91.80.43537383 Visit www.macomtech.com for additional data sheets and product information.

• North America Tel: 800.366.2266 • Europe Tel: +353.21.244.6400

• China Tel: +86.21.2407.1588

MASWSS0091

GaAs SP6T 2.5 V High Power Switch Dual / Tri / Quad-Band GSM Applications

Rev. V7

Truth Table 5,6

VTx1	VTx2	VRxC	VRx1	VRx2	VRx3	VRx4	ANT-Tx1	ANT-Tx2	ANT-Rx1	ANT-Rx2	ANT-Rx3	ANT-Rx4
1	0	0	0	0	0	0	On	Off	Off	Off	Off	Off
0	1	0	0	0	0	0	Off	On	Off	Off	Off	Off
0	0	1	1	0	0	0	Off	Off	On	Off	Off	Off
0	0	1	0	1	0	0	Off	Off	Off	On	Off	Off
0	0	1	0	0	1	0	Off	Off	Off	Off	On	Off
0	0	1	0	0	0	1	Off	Off	Off	Off	Off	On

- 5. Differential voltage, V (state 1) -V (state 0), must be 2.5 V minimum.
- 6. State 0 = 0 V to +0.2 V, State 1 = 2.5 V to 5 V.

typical. Mechanical outline has been fixed. Engineering samples of Commitment to produce in volume is not guaranteed.