

Open Carrier Double-Balanced Mixer For Microwave Telecommunications

Rev. V2

Features

LO & RF: 4.0 TO 20.0 GHz


IF: DC TO 4.0 GHz

LO DRIVE: +10 dBm (NOMINAL)

MICROSTRIP INTERFACE

Description

The MC4510 is a double balanced mixer, designed for use in military, commercial and test equipment applications. The design utilizes Schottky ring quad diodes and broadband soft dielectric and ferrite baluns to attain excellent performance. This mixer can also be used as a phase detector and/or bi-phase modulator since the IF port is DC coupled to the diodes. The use of high temperature solder and welded assembly processes used internally makes it ideal for use in manual, semi-automated assembly. Environmental screening available to MIL-STD-883, MIL-STD-202, or MIL-DTL-28837, consult factory.

Ordering Information

Part Number	Package
MC4510	Open Carrier
MC4510-2	Open Carrier

Electrical Specifications: $Z_0 = 50\Omega$ Lo = +10 dBm (Downconverter application only)

Parameter	Test Conditions	Units	Typical	Guaranteed	
Parameter	rest Conditions			+25°C	-54º to +85ºC
SSB Conversion Loss (max) & SSB Noise Figure (max)	$fR=6\ to\ 18\ GHz\ ,\ fL=6\ to\ 18\ GHz\ ,\ fI=0\ to\ 2\ GHz$ $fR=6\ to\ 18\ GHz\ ,\ fL=6\ to\ 18\ GHz\ ,\ fI=0\ to\ 4\ GHz$ $fR=4\ to\ 20\ GHz\ ,\ fL=4\ to\ 20\ GHz\ ,\ fI=0\ to\ 4\ GHz$	dB dB dB	6.0 6.5 7.5	7.5 8.0 9.0	8.0 8.5 9.5
Isolation, L to R (min)	fL = 8 to 16 GHz fL = 6 to 18 GHz fL = 4 to 20 GHz	dB dB dB	38 33 25	28 22 15	26 20 13
Isolation, L to I (min)	fL = 8 to 16 GHz fL = 6 to 18 GHz fL = 4 to 20 GHz	dB dB dB	32 30 25	22 18 15	20 16 13
Isolation, R to I (min)	fL = 4 to 20 GHz	dB	32		
1 dB Conversion Comp.	fL = +10 dBm	dBm	+4		
Input IP3	fR1 = 8.4 GHz at -5 dBm, fR2 = 8.42 GHz at -5 dBm, fL = 8.6 GHz at +10 dBm fR1 = 14.4 GHz at -5 dBm, fR2 = 14.42 GHz at -5 dBm, fL = 15.4 GHz at +10 dBm	dBm dBm	+13 +14		

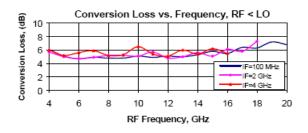
Solutions has under development. Performance is based on engineering tests. Specifications are

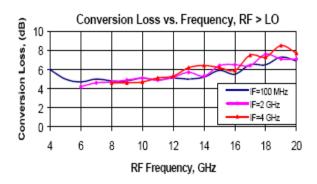
typical. Mechanical outline has been fixed. Engineering samples

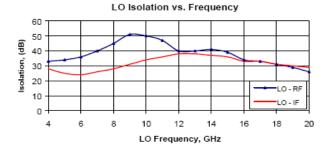
Commitment to produce in volume is not du

[•] North America Tel: 800.366.2266 • Europe Tel: +353.21.244.6400

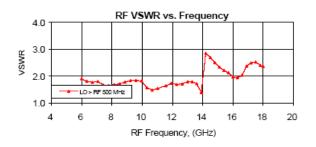
[•] India Tel: +91.80.4155721

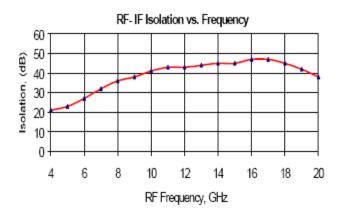

[•] China Tel: +86.21.2407.1588 Visit www.macomtech.com for additional data sheets and product information.

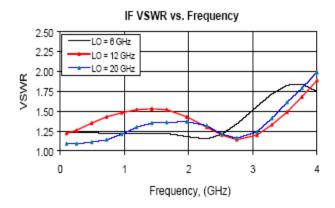



Open Carrier Double-Balanced Mixer For Microwave Telecommunications

Rev. V2


Typical Performance Curves

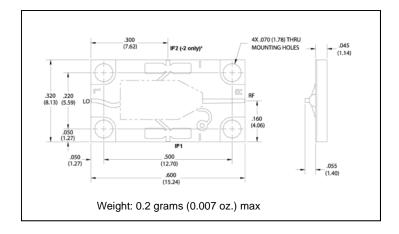




2

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.

North America Tel: 800.366.2266
India Tel: +91.80.4155721
Europe Tel: +353.21.244.6400
China Tel: +86.21.2407.1588
Visit www.macomtech.com for additional data sheets and product information.


Open Carrier Double-Balanced Mixer For Microwave Telecommunications

Rev. V2

Absolute Maximum Ratings

Parameter	Absolute Maximum		
Operating Temperature	-40°C to +85°C		
Storage Temperature	-65°C to +100°C		
Peak Input Power	+20 dBm max @ +25°C +17 dBm max @ +85°C		
Peak Input Current	50 mA DC		

Outline Drawing: Open Carrier * MC4510

*For the base model, only the IF1 port is connected. For the "-2" model, only the IF2 port is connected.

Dimensions are inches (millimeters) ±0.015 (0.38) unless otherwise specified.

Solutions has under development. Performance is based on engineering tests. Specifications are

typical. Mechanical outline has been fixed. Engineering samples

Commitment to produce in volume is not g