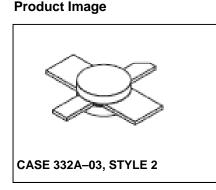
MRF1000MB

Class A, Class AB Microwave Power Silicon NPN Transistor 0.7 W, 960–1215 MHz, 18V

M/A-COM Products Released - Rev. 053007


Features

- Guaranteed performance @ 1090 MHz, 18 Vdc Class A
- Output power: 0.2W
- Minimum gain: 10dB
- 100% tested for load mismatch at all phase angles with 10:1 VSWR
- Industry standard package
- Nitride passivated
- Gold metallized, emitter ballasted for long life and resistance to metal migration
- Internal input matching for broadband operation

Description and Applications

Designed for Class A and AB common emitter amplifier applications in the low–power stages of IFF, DME, TACAN, radar transmitters, and CW systems.

MAXIMUM RATINGS

Rating	Symbol	l Value		Unit			
Collector–Emitter Voltage V _{CEO}		20		Vdc			
Collector–Base Voltage V _{CBO}		5	D	Vdc			
Emitter–Base Voltage		3.5		Vdc			
Collector Current — Continuous	lc	200		mAdc			
Total Device Dissipation @ T _C = 25°C (1) Derate above 25°C	PD	7.0 40		Watts mW/∘C			
THERMAL CHARACTERISTICS		1	I	I			
Characteristic		Syn	nbol	Мах		Unit	
Thermal Resistance, Junction to Case (2)		Re	R _{0JC} 25		°C/W		
ELECTRICAL CHARACTERISTICS (T _C = 25°C unles	ss otherwise no	ted.)					
Characteristic	9	Symbol	Min	Тур	Ma	x Unit	
OFF CHARACTERISTICS							
Collector–Emitter Breakdown Voltage (I _C = 5.0 mAdc, I _B = 0)		BR)CEO 20		-	-	Vdc	
Collector–Emitter Breakdown Voltage ($I_C = 5.0 \text{ mAdc}, V_{BE} = 0$)		BR)CES 50		-	-	Vdc	
Collector–Base Breakdown Voltage ($I_c = 5.0 \text{ mAdc}, I_E = 0$)		V _{(BR)CBO} 50		-	-	Vdc	
Emitter–Base Breakdown Voltage (I _E = 1.0 mAdc, I _C = 0)		V _{(BR)EBO} 3.5		-	-	Vdc	
Collector Cutoff Current (V _{CB} = 20 Vdc, I _E = 0)		I _{CBO}	_	_	0.5	5 mAdc	
ON CHARACTERISTICS	<u> </u>						
DC Current Gain (I _C = 100 mAdc, V _{CE} = 5.0 Vdc)		h _{FE}	10	_	100) —	

1. These devices are designed for RF operation. The total device dissipation rating applies only when the device is operated as RF amplifiers.

2. Thermal Resistance is determined under specified RF operating conditions by infrared measurement techniques.

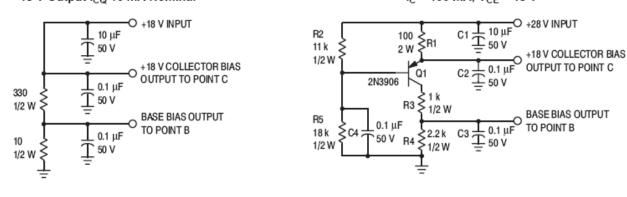
nav be

- 1
- ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. **PRELIMINARY:** Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are
- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.

typical. Mechanical outline has been fixed. Engineering samples Commitment to produce in volume is not guardited.

Railable. M/A-COM Technology Soutions morand its iffiliates reserve the right to make Ching is to the product sporin ormation contained herein without notice.

MRF1000MB



Class A, Class AB Microwave Power Silicon NPN Transistor 0.7 W, 960–1215 MHz, 18V

M/A-COM Products Released - Rev. 053007

Characteristic	Symbol	Min	Тур	Max	Unit
DYNAMIC CHARACTERISTICS					
Output Capacitance (V _{CB} = 28 Vdc, I _E = 0, f = 1.0 MHz)	Cob	-	2.0	5.0	pF
FUNCTIONAL TESTS			1		
Common–Emitter Power Gain — Class A (V _{CE} = 18 Vdc, I _C = 100 mAdc, f = 1090 MHz, P _{out} = 200 mW)	G _{PE}	10	12	—	dB
Common–Emitter Power Gain — Class AB (V _{CE} = 18 Vdc, I _{CQ} = 10 mAdc, f = 1090 MHz, P _{out} = 0.7 W)	G _{PE}	_	10.7	—	dB
Load Mismatch — Class A (V _{CE} = 18 Vdc, I _C = 100 mAdc, f = 1090 MHz, P _{out} = 200 mW, VSWR = 10:1 All Phase Angles)	Ψ	No Degradation in Power Output			
C1, C2, C3, C7, C8, C10 — 220 pF ATC 100 mil C4, C9 — 4.7 μ F 50 V Tantalum C5, C6 — 0.8–8.0 pF Johanson #7290 C1–Z10 — Distributed Microstrip Elements — See Figure 8 Board Material — 0.031" Thick Teflon–Fiberglass $\varepsilon_r = 2.56$			Ĭ	COLLECTOR B	as input

 $\begin{array}{c} 0 - 4.7 \ \mu\text{F 50 V Tantalum} \\ 5 - 0.8 - 8.0 \ \text{pF Johanson \#7290} \\ 0 - \text{Distributed Microstrip Elements} \\ - \text{See Figure 8} \\ \text{Material} - 0.031^{\prime\prime} \ \text{Thick Teflon-Fiberglass} \\ \epsilon_r = 2.56 \\ \hline \\ \mathbf{F}_r = 2.56 \\ \hline \\ \mathbf{C}_2 - \mathbf{C}_3 - \mathbf{C}_4 - \mathbf{C}_4 \\ \hline \\ \mathbf{C}_2 - \mathbf{C}_3 - \mathbf{C}_4 - \mathbf{C}_4 \\ \hline \\ \mathbf{C}_2 - \mathbf{C}_3 - \mathbf{C}_4 - \mathbf{C}_4 \\ \hline \\ \mathbf{C}_2 - \mathbf{C}_3 - \mathbf{C}_4 - \mathbf{C}_4 \\ \hline \\ \mathbf{C}_2 - \mathbf{C}_3 - \mathbf{C}_4 - \mathbf{C}_4 \\ \hline \\ \mathbf{C}_2 - \mathbf{C}_3 - \mathbf{C}_4 - \mathbf{C}_4 \\ \hline \\ \mathbf{C}_2 - \mathbf{C}_3 - \mathbf{C}_4 \\ \hline \\ \mathbf{C}_4 - \mathbf{C}_4 \\ \hline \\ \mathbf{C}_4 - \mathbf{C}_5 \\ \hline \\ \mathbf{C}_5 - \mathbf{C}_4 \\ \hline \\ \mathbf{C}_5 - \mathbf{C}_6 \\ \hline \\ \mathbf{Class A B Bias Control Circuit} \\ \mathbf{Class A Constant Current Bias Control Circuit} \\ \mathbf{1}_C = 100 \ \text{mA}, \ \mathbf{V}_{CE} = 18 \ \text{V} \end{array}$

Figure 1. 1090 MHz Test Circuit

2

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. **PRELIMINARY**: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples more structure may be available. Commitment to produce in volume is not guaranteed.

Class A, Class AB Microwave Power Silicon NPN Transistor 0.7 W, 960–1215 MHz, 18V

M/A-COM Products Released - Rev. 053007

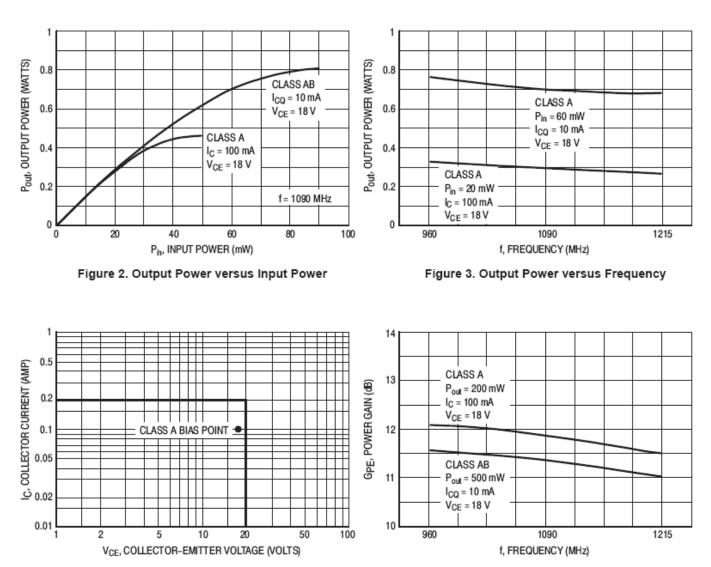
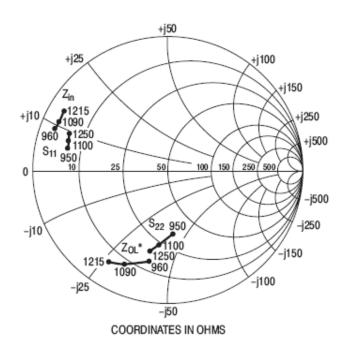


Figure 4. DC Safe Operating Area

Figure 5. Power Gain versus Frequency

3

- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.

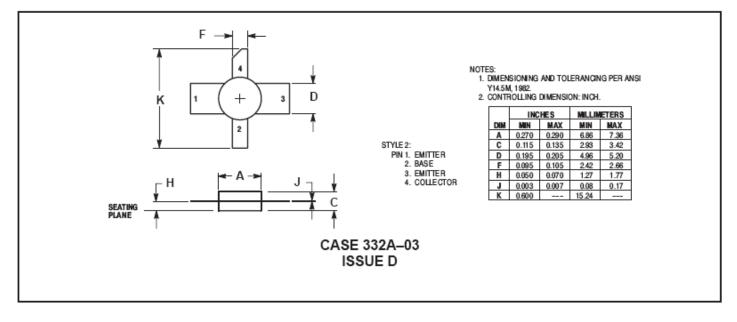

e. MA-COM Technology Soutions and an dris affiliates reserve the right to make Ching is to the productis) on more tion contained herein without notice.

MRF1000MB

Class A, Class AB Microwave Power Silicon NPN Transistor 0.7 W, 960-1215 MHz, 18V

M/A-COM Products Released - Rev. 053007

SERIES EQUIVALENT IMPEDANCES Pout = 0.5 W, VCE = 18 Vdc, ICQ = 10 mAdc, Class AB


f	Z _{in}	Z _{OL} *
MHz	Ohms	Ohms
960	3.0 + j9.0	16 – j40
1090	3.2 + j10	8.5 – j31
1215	2.8 + j12	7.0 – j26

Z_{OI} * = Conjugate of the optimum load impedance into which the device output operates at a given output power, voltage, and frequency.

S-PARAMETERS - V_{CE} = 18 Vdc, I_C = 100 mAdc, Class A

F	\$ ₁₁		\$ ₂₁		\$ ₁₂		\$ ₂₂	
(MHz)	S ₁₁	∠¢	S ₂₁	∠¢	S ₁₂	$\angle \phi$	S ₂₂	∠¢
950	0.77	166	2.42	40	0.016	42	0.48	-87
1000	0.78	165	2.36	38	0.016	48	0.50	-90
1050	0.77	163	2.31	33	0.016	46	0.51	-94
1100	0.77	162	2.31	28	0.016	46	0.54	-97
1150	0.78	161	2.20	23	0.015	46	0.57	-100
1200	0.78	159	2.20	19	0.016	47	0.59	-103
1250	0.78	158	2.12	12	0.016	42	0.61	-106

Figure 6. Common-Emitter S-Parameters and Series Equivalent Input/Output Impedances Replaces MRF1000MA/D

ailable

nav be

PACKAGE DIMENSIONS

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.

- North America Tel: 800.366.2266 / Fax: 978.366.2266 Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300 •
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
- Visit www.macomtech.com for additional data sheets and product information.

PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples Commitment to produce in volume is not duaranteed.

4