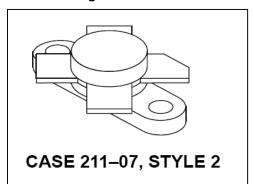
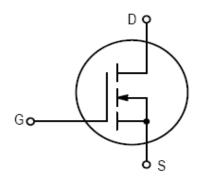


M/A-COM Products Released - Rev. 05202009


Designed for wideband large signal amplifier and oscillator applications Up to 400 MHz range, in single-ended configuration


N-Channel enhancement mode

Guaranteed 28 volt, 150 MHz performance
 Output power = 15 watts
 Narrowband gain = 16 dB (Typ.)
 Efficiency = 60% (Typ.)

- Small– and large–signal characterization
- 100% tested for load mismatch at all phase angles with 30:1 VSWR
- Excellent thermal stability, ideally suited for Cass A operation
- Facilitates manual gain control, ALC and modulation techniques

Product Image

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	VDSS	65	Vdc
Drain–Gate Voltage (R _{GS} = 1.0 MΩ)	V _{DGR}	65	Vdc
Gate-Source Voltage	VGS	±40	Vdc
Drain Current — Continuous	ID	2.5	Adc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	55 0.314	Watts W/°C
Storage Temperature Range	T _{stg}	-65 to +150	°C
Operating Junction Temperature	TJ	200	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	3.2	°C/W

NOTE – <u>CAUTION</u> – MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

y ns are Visit

• North America Tel: 800.366.2266 / Fax: 978.366.2266

• **Europe** Tel: 44.1908.574.200 / Fax: 44.1908.574.300

MRF136

The RF MOSFET Line 15W, to 400MHz, 28V

M/A-COM Products Released - Rev. 05202009

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS (1)					
Drain-Source Breakdown Voltage (VGS = 0, ID = 5.0 mA)	V(BR)DSS	65	_	_	Vdc
Zero-Gate Voltage Drain Current (VDS = 28 V, VGS = 0)	IDSS	-	_	2.0	mAdc
Gate-Source Leakage Current (V _{GS} = 40 V, V _{DS} = 0)	I _{GSS} —		_	1.0	μAdc
ON CHARACTERISTICS (1)					
Gate Threshold Voltage (VDS = 10 V, ID = 25 mA)	VGS(th)	1.0	3.0	6.0	Vdc
Forward Transconductance (VDS = 10 V, ID = 250 mA)	9fs	250	400	_	mmhos
DYNAMIC CHARACTERISTICS (1)	•		•		•
Input Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz)	C _{iss}	_	24	_	pF
Output Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz)	C _{oss}	_	27	_	pF
Reverse Transfer Capacitance (V _{DS} = 28 V, V _{GS} = 0, f = 1.0 MHz)	C _{rss}	_	5.5	_	pF
FUNCTIONAL CHARACTERISTICS	•				
Noise Figure (V _{DS} = 28 Vdc, I _D = 500 mA, f = 150 MHz)	NF	_	1.0	_	dB
Common Source Power Gain (Figure 1) (VDD = 28 Vdc, P _{out} = 15 W, f = 150 MHz, I _{DQ} = 25 mA)	G _{ps}	13	16	_	dB
Drain Efficiency (Figure 1) (V _{DD} = 28 Vdc, P _{out} = 15 W, f = 150 MHz, I _{DQ} = 25 mA)	η	50	60	_	%
Electrical Ruggedness (Figure 1) (V _{DD} = 28 Vdc, P _{out} = 15 W, f = 150 MHz, I _{DQ} = 25 mA, VSWR 30:1 at all Phase Angles)	Ψ	No Degradation in Output Power			

NOTES:

Each side measured separately.

• North America Tel: 800.366.2266 / Fax: 978.366.2266 • Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

M/A-COM Products Released - Rev. 05202009

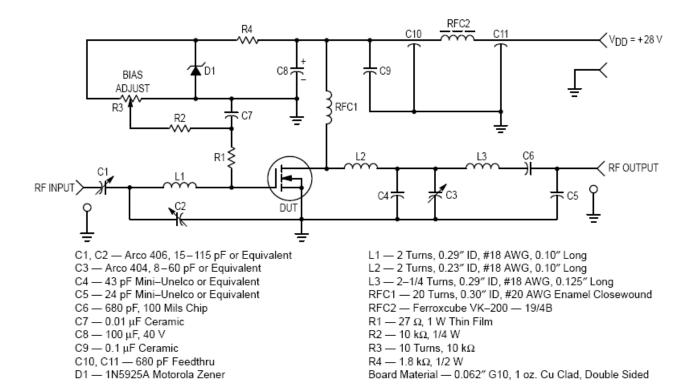


Figure 1. 150 MHz Test Circuit

TYPICAL CHARACTERISTICS

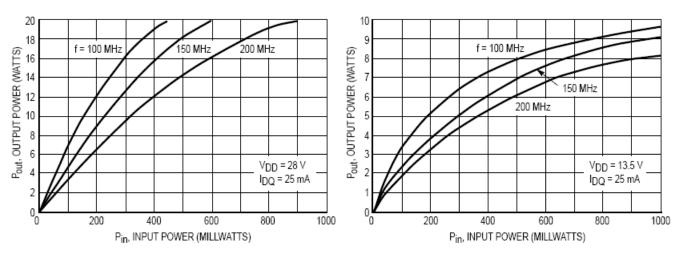


Figure 2. Output Power versus Input Power

Figure 3. Output Power versus Input Power

typical. Mechanical outline has been fixed. Engineering samples

Commitment to produce in volume is not gua

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- **Europe** Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.

M/A-COM Products Released - Rev. 05202009

TYPICAL CHARACTERISTICS

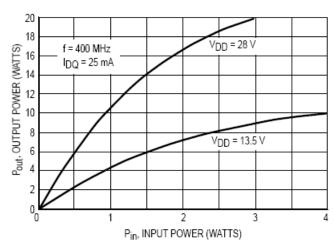


Figure 4. Output Power versus Input Power

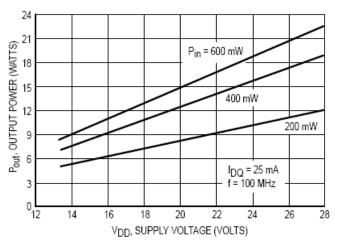


Figure 5. Output Power versus Supply Voltage

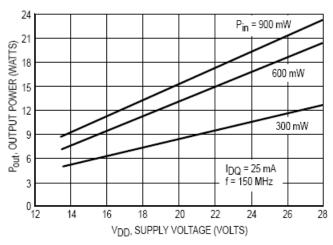


Figure 6. Output Power versus Supply Voltage

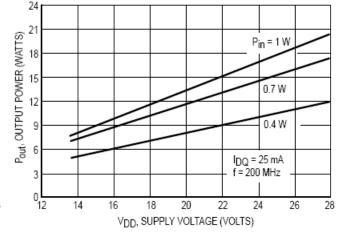


Figure 7. Output Power versus Supply Voltage

typical. Mechanical outline has been fixed. Engineering samples Commitment to produce in volume is not guaranteed.

Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

• North America Tel: 800.366.2266 / Fax: 978.366.2266 Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

Visit www.macomtech.com for additional data sheets and product information.

M/A-COM Products Released - Rev. 05202009

TYPICAL CHARACTERISTICS

Figure 8. Output Power versus Supply Voltage

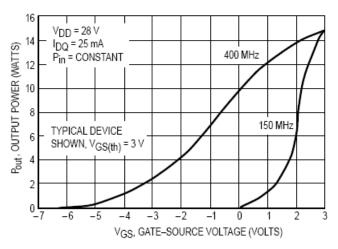


Figure 9. Output Power versus Gate Voltage

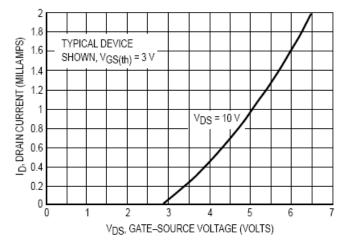


Figure 10. Drain Current versus Gate Voltage (Transfer Characteristics)

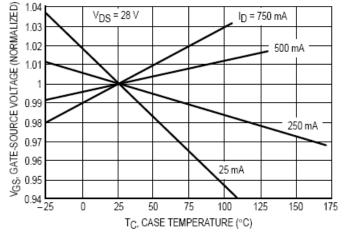
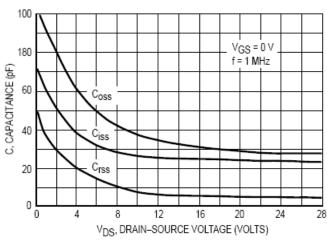


Figure 11. Gate-Source Voltage versus Case Temperature


Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

[•] **Europe** Tel: 44.1908.574.200 / Fax: 44.1908.574.300

M/A-COM Products Released - Rev. 05202009

TYPICAL CHARACTERISTICS

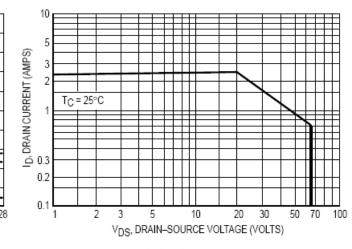
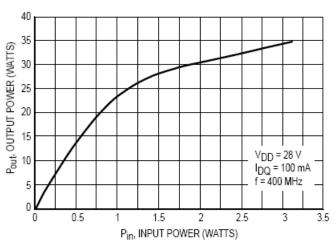



Figure 12. Capacitance versus Drain-Source Voltage

Figure 13. DC Safe Operating Area

TYPICAL 400 MHz PERFORMANCE

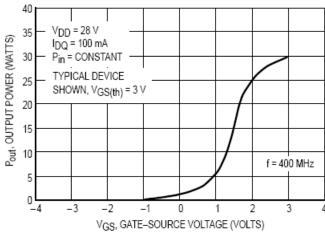


Figure 15. Output Power versus Gate Voltage

Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

M/A-COM Products Released - Rev. 05202009

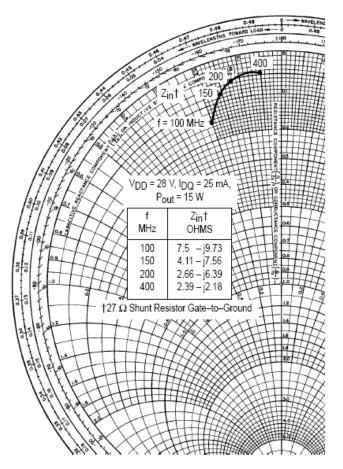


Figure 16. Large-Signal Series Equivalent Input Impedance, Z_{in}†

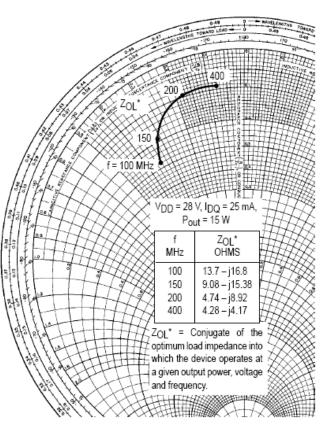


Figure 17. Large-Signal Series Equivalent Output Impedance, Z_{OL}*

PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test later may be evailable. Commitment to produce in volume is not guaranteed.

• North America Tel: 800.366.2266 / Fax: 978.366.2266

• Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

M/A-COM Products Released - Rev. 05202009

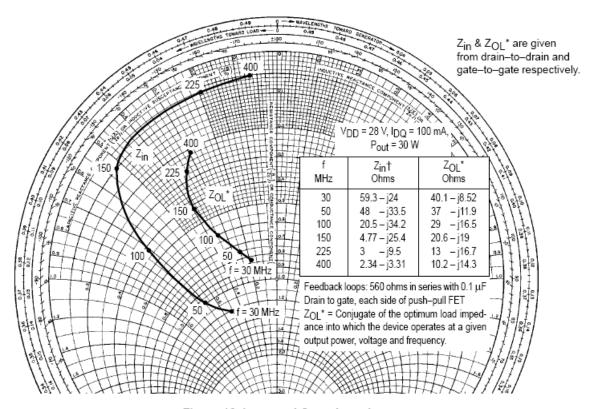


Figure 18. Input and Outut Impedance

[•] Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.

M/A-COM Products Released - Rev. 05202009

f	s ₁₁		s ₂₁		S.	\$ ₁₂		s ₂₂	
(MHz)	S ₁₁	ф	\$ ₂₁	ф	S ₁₂	ф	S ₂₂	ф	
2.0	0.988	-11	41.19	173	0.006	67	0.729	-12	
5.0	0.970	-27	40.07	164	0.014	62	0.720	-31	
10	0.923	-52	35.94	149	0.026	54	0.714	-58	
20	0.837	-88	27.23	129	0.040	36	0.690	-96	
30	0.784	-111	20.75	117	0.046	27	0.684	-118	
40	0.751	-125	16.49	108	0.048	22	0.680	-131	
50	0.733	-135	13.41	103	0.050	19	0.679	-139	
60	0.720	-142	11.43	99	0.050	16	0.678	-145	
70	0.709	-147	9.871	96	0.050	14	0.679	-149	
80	0.707	-152	8.663	93	0.051	13	0.683	-153	
90	0.706	-155	7.784	91	0.051	13	0.682	-155	
100	0.708	-157	7.008	88	0.051	13	0.680	-157	
110	0.711	-159	6.435	86	0.051	14	0.681	-158	
120	0.714	-161	5.899	85	0.051	15	0.682	-159	
130	0.717	-163	5.439	82	0.052	16	0.684	-160	
140	0.720	-164	5.068	80	0.052	17	0.684	-161	
150	0.723	-165	4.709	80	0.052	18	0.686	-161	
160	0.727	-166	4.455	78	0.052	18	0.690	-161	
170	0.732	-167	4.200	77	0.052	18	0.694	-162	
180	0.735	-168	3.967	75	0.052	19	0.699	-162	
190	0.738	-169	3.756	74	0.052	19	0.703	-163	
200	0.740	-170	3.545	73	0.052	20	0.706	-163	
225	0.746	-171	3.140	69	0.053	22	0.717	-163	
250	0.742	-172	2.783	67	0.053	25	0.724	-163	
275	0.744	-173	2.540	64	0.054	27	0.724	-163	
300	0.751	-174	2.323	60	0.055	29	0.736	-163	
325	0.757	-175	2.140	58	0.058	32	0.749	-163	
350	0.760	-176	1.963	54	0.059	35	0.758	-163	
375	0.762	-177	1.838	52	0.062	38	0.768	-163	
400	0.774	-179	1.696	50	0.065	41	0.783	-163	
425	0.775	-179	1.590	48	0.068	43	0.793	-163	
450	0.781	+179	1.493	46	0.071	46	0.805	-163	
475	0.787	+ 177	1.415	43	0.074	47	0.813	-164	
500	0.792	+176	1.332	40	0.079	48	0.825	-164	
525	0.797	+ 175	1.259	38	0.083	50	0.831	-164	
550	0.801	+175	1.185	37	0.088	51	0.843	-164	
575	0.810	+ 174	1.145	36	0.094	52	0.855	-164	
600	0.816	+173	1.091	34	0.101	52	0.869	-165	
625	0.818	+ 171	1.041	32	0.106	53	0.871	-165	
650	0.825	+ 170	0.994	30	0.112	53	0.884	-165	
675	0.834	+169	0.962	29	0.119	53	0.890	-165	
700	0.837	+ 168	0.922	27	0.127	53	0.906	-166	
725	0.836	+167	0.879	25	0.133	52	0.909	-167	
750	0.841	+166	0.838	25	0.140	53	0.917	-167	
775	0.844	+ 165	0.824	24	0.148	52	0.933	-167	
800	0.846	+163	0.785	21	0.154	50	0.941	-168	

Table 1. Common Source Scattering Parameters V_{DS} = 28 V, I_{D} = 0.5 A

and/or prototype measurements. Commitment to develop is not guaranteed.

PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology
Solutions has under development. Performance is based on engineering tests. Specifications are
typical. Mechanical outline has been fixed. Engineering samples and/or test late may be available.

Commitment to produce in volume is not guaranteed.

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.

M/A-COM Products Released - Rev. 05202009

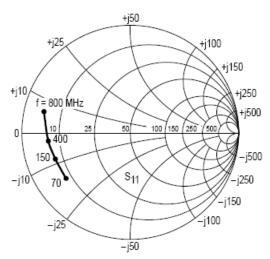


Figure 19. S₁₁, Input Reflection Coefficient versus Frequency VDS = 28 V ID = 0.5 A

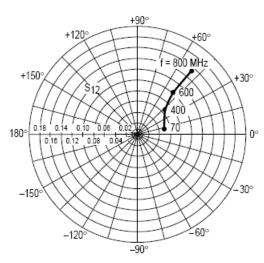


Figure 20. S₁₂, Reverse Transmission Coefficient versus Frequency VDS = 28 V ID = 0.5 A

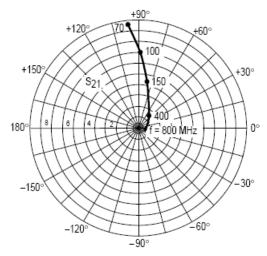


Figure 21. S₂₁, Forward Transmission Coefficient versus Frequency VDS = 28 V ID = 0.5 A

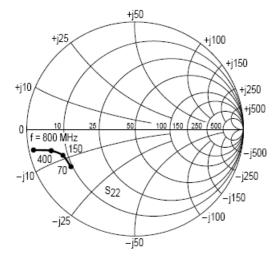


Figure 22. S22, Output Reflection Coefficient versus Frequency VDS = 28 V ID = 0.5 A

PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples Commitment to produce in volume is not guaranteed.

[•] North America Tel: 800.366.2266 / Fax: 978.366.2266

Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

MRF136

The RF MOSFET Line 15W, to 400MHz, 28V

M/A-COM Products Released - Rev. 05202009

RF POWER MOSFET CONSIDERATIONS

DESIGN CONSIDERATIONS

The MRF137 is a RF power N-Channel enhancement-mode field-effect transistor (FET) designed especially for VHF power amplifier applications. M/A-COM RF MOS FETs feature a vertical structure with a planar design, thus avoiding the processing difficulties associated with V-groove vertical power FETs.

M/A-COM Application Note AN211A, FETs in Theory and-Practice, is suggested reading for those not familiar with the construction and characteristics of FETs.

The major advantages of RF power FETs include high gain, low noise, simple bias systems, relative immunity from thermal runaway, and the ability to withstand severely mismatched loads without suffering damage. Power output can be varied over a wide range with a low power dc control signal, thus facilitating manual gain control, ALC and modulation.

DC BIAS

The MRF137 is an enhancement mode FET and, therefore, does not conduct when drain voltage is applied. Drain current flows when a positive voltage is applied to the gate. See Figure 10 for a typical plot of drain current versus gate voltage. RF power FETs require forward bias for optimum performance.

The value of quiescent drain current (IDQ) is not critical formany applications. The MRF137 was characterized at IDQ = 25 mA, which is the suggested minimum value of IDQ. For special applications such as linear amplification, IDQ may have to be selected to optimize the critical parameters.

The gate is a dc open circuit and draws no current. Therefore, the gate bias circuit may generally be just a simple

resistive divider network. Some special applications may require a more elaborate bias system.

GAIN CONTROL

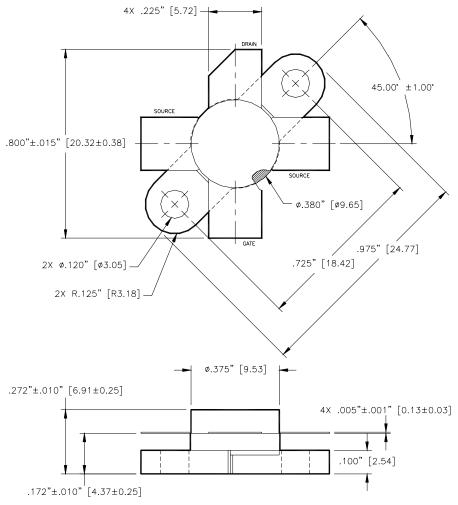
Power output of the MRF137 may be controlled from its rated value down to zero (negative gain) by varying the dc gate voltage. This feature facilitates the design of manual gain control, AGC/ALC and modulation systems. (See Figure 9.)

AMPLIFIER DESIGN

Impedance matching networks similar to those used with bipolar VHF transistors are suitable for MRF137. See M/A-COM Application Note AN721, Impedance Matching Networks Applied to RF Power Transistors. The higher input impedance of RF MOS FETs helps ease the task of broadband network design. Both small signal scattering parameters and large signal impedances are provided. While the s-parameters will not produce an exact design solution for high power operation, they do yield a good first approximation. This is an additional advantage of RF MOS power FETs.

RF power FETs are triode devices and, therefore, not unilateral. This, coupled with the very high gain of the MRF137, yields a device capable of self oscillation. Stability may be achieved by techniques such as drain loading, input shunt resistive loading, or output to input feedback. Two port parameter stability analysis with the MRF137 sparameters provides a useful tool for selection of loading or feedback circuitry to assure stable operation. See M/A-COM Application Note AN215A for a discussion of two port network theory and stability.

LOW NOISE OPERATION


Input resistive loading will degrade noise performance, and noise figure may vary significantly with gate driving impedance. A low loss input matching network with its gate impedance optimized for lowest noise is recommended.

PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test date may be evailable Commitment to produce in volume is not guaranteed.

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.

M/A-COM Products Released - Rev. 05202009

Unless otherwise noted, tolerances are inches $\pm .005$ " [millimeters ± 0.13 mm]

Solutions has under development. Performance is based on engineering tests. Specifications are Solutions has under development. Ferformance is based on english typical. Mechanical outline has been fixed. Engineering samples Commitment to produce in volume is not guaranteed.

[•] North America Tel: 800.366.2266 / Fax: 978.366.2266

[•] Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300