
The RF MOSFET Line 150W, to 150MHz, 28V

Designed primarily for linear large-signal output stages up to 150 MHz frequency range.

N-Channel enhancement mode

- Specified 28 volts, 30 MHz characteristics Output power = 150 watts Power gain = 15 dB (Typ.) Efficiency = 40% (Typ.)
- Superior high order IMD •
- IMD(d3) (150 W PEP): -30 dB (Typ.)
- IMD(d11) (150 W PEP): -60 dB (Typ.)
- 100% tested for load mismatch at all phase angles with 30:1 VSWR

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain–Source Voltage	V _{DSS}	65	Vdc
Drain-Gate Voltage	V _{DGO}	65	Vdc
Gate-Source Voltage	V _{GS}	±40	Vdc
Drain Current — Continuous	ID	16	Adc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	300 1.7	Watts W/°C
Storage Temperature Range	T _{stg}	-65 to +150	°C
Operating Junction Temperature	TJ	200	°C

THERMAL CHARACTERISTICS

Commitment to produce in volume is not gua

Characteristic	Symbol	Мах	Unit
Thermal Resistance, Junction to Case	R _{eJC}	0.6	°C/W

NOTE — CAUTION — MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

changes to the proc

v be

- ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples ailable.
- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300 ٠
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298 Visit www.macomtech.com for additional data sheets and product information.
- M/A-COM Technology Solutions incrand its iffiliates reserve the right to make one no situ the products) ovin ormation contained herein without notice.

M/A-COM Products

Released - Rev. 07.07

Product Image

The RF MOSFET Line 150W, to 150MHz, 28V

Technology Solutions

M/A-COM Products Released - Rev. 07.07

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted.)

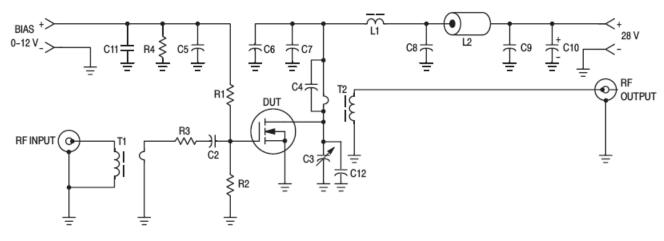
Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS		•	•		•
Drain-Source Breakdown Voltage (V _{GS} = 0, I _D = 100 mA)	V _{(BR)DSS}	65	_	_	Vdc
Zero Gate Voltage Drain Current (V _{DS} = 28 Vdc, V _{GS} = 0)	IDSS	_	_	5.0	mAdc
Gate–Body Leakage Current (V _{GS} = 20 Vdc, V _{DS} = 0)	I _{GSS}	_	_	1.0	μAdc
ON CHARACTERISTICS			•		•
Gate Threshold Voltage (V _{DS} = 10 V, I _D = 100 mA)	V _{GS(th)}	1.0	3.0	5.0	Vdc
Drain–Source On–Voltage (V _{GS} = 10 V, I _D = 10 Adc)	V _{DS(on)}	0.1	0.9	1.5	Vdc
Forward Transconductance (V _{DS} = 10 V, I _D = 5.0 A)	9 _{fs}	4.0	7.0	_	mhos
DYNAMIC CHARACTERISTICS					
Input Capacitance (V _{DS} = 28 V, V _{GS} = 0, f = 1.0 MHz)	Ciss	_	450	_	pF
Output Capacitance (V _{DS} = 28 V, V _{GS} = 0, f = 1.0 MHz)	Coss	_	400	_	pF
Reverse Transfer Capacitance (V _{DS} = 28 V, V _{GS} = 0, f = 1.0 MHz)	Crss	_	75	_	pF
FUNCTIONAL TESTS (SSB)					
Common Source Amplifier Power Gain (30 MHz) (V _{DD} = 28 V, P _{out} = 150 W (PEP), I _{DQ} = 250 mA) (150 MHz)	G _{ps}	_	15 6.0	_	dB
Drain Efficiency (V _{DD} = 28 V, P _{out} = 150 W (PEP), f = 30; 30.001 MHz, I _D (Max) = 6.5 A)	η	_	40	_	%
Intermodulation Distortion (1) (V _{DD} = 28 V, P _{out} = 150 W (PEP), f1 = 30 MHz, f2 = 30.001 MHz, I _{DQ} = 250 mA)	IMD _(d3) IMD _(d11)	_	30 60	_	dB
Load Mismatch (V _{DD} = 28 V, P _{out} = 150 W (PEP), f = 30; 30.001 MHz, I _{DQ} = 250 mA, VSWR 30:1 at all Phase Angles)	Ψ	No Degradation in Output Power			

NOTE:

1. To MIL-STD-1311 Version A, Test Method 2204B, Two Tone, Reference Each Tone.

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples m/or test data may be realable.

- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
- Visit www.macomtech.com for additional data sheets and product information.



[•] North America Tel: 800.366.2266 / Fax: 978.366.2266

Technology Solutions

The RF MOSFET Line 150W, to 150MHz, 28V

- C2, C5, C6, C7, C8, C9 0.1 µF Ceramic Chip or Monolythic with Short Leads
- C3 Arco 469
- C4 820 pF Unencapsulated Mica or Dipped Mica with Short Leads
- C10 10 µF/100 V Electrolytic
- C11 1 µF, 50 V, Tantalum
- C12 330 pF, Dipped Mica (Short leads)

- L1 VK200/4B Ferrite Choke or Equivalent, 3.0 µH
- L2 Ferrite Bead(s), 2.0 μH
- R1, R2 51 Ω/1.0 W Carbon
- R3 1.0 $\Omega/1.0$ W Carbon or Parallel Two 2 $\Omega,$ 1/2 W Resistors
- R4 1 kΩ/1/2 W Carbon
- T1 16:1 Broadband Transformer
- T2 1:25 Broadband Transformer

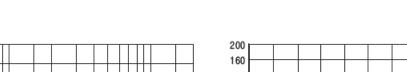


Figure 1. 30 MHz Test Circuit (Class AB)

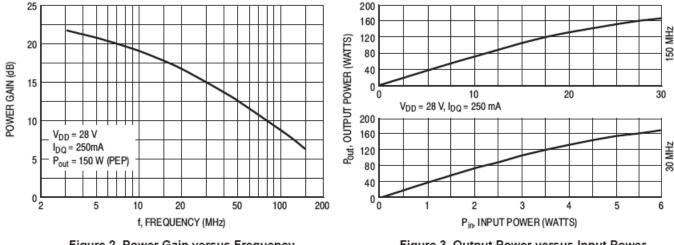
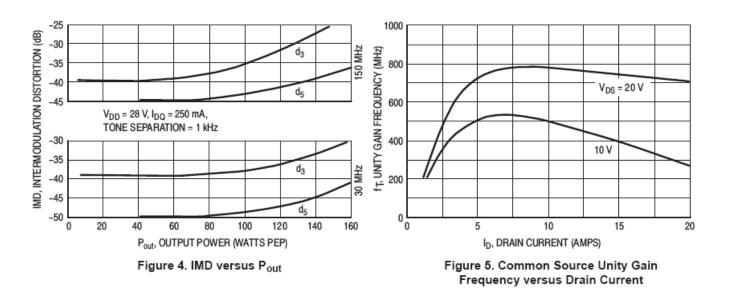


Figure 2. Power Gain versus Frequency

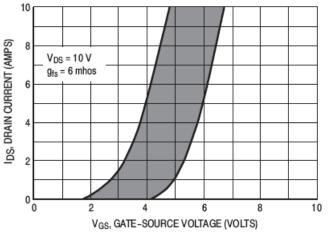
3

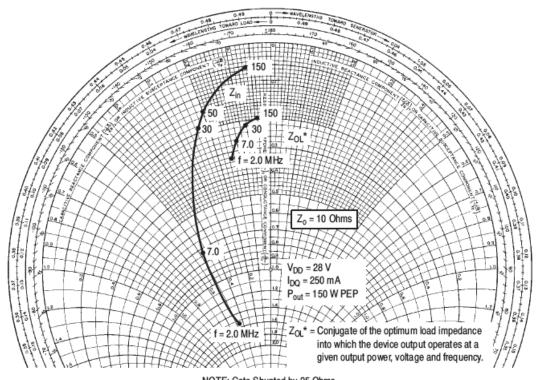

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or protuct state may be exailable. Commitment to produce in volume is not guaranteed.

4

The RF MOSFET Line 150W, to 150MHz, 28V

M/A-COM Products Released - Rev. 07.07




Figure 6. Gate Voltage versus Drain Current

The RF MOSFET Line 150W, to 150MHz, 28V

M/A-COM Products Released - Rev. 07.07

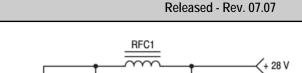
NOTE: Gate Shunted by 25 Ohms.

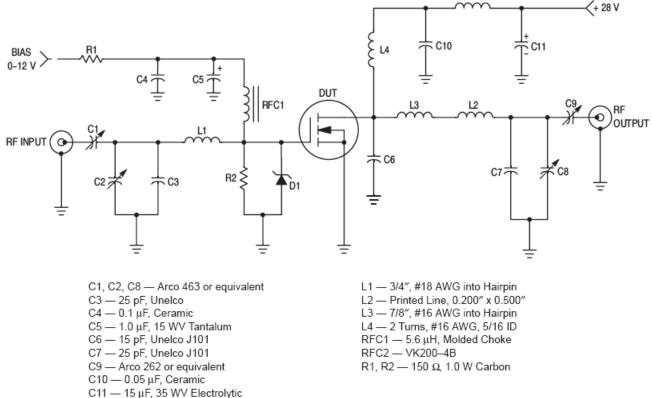
Figure 7. Series Equivalent Impedance

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test dotte may be vailable. Commitment to produce in volume is not guaranteed.

5

• North America Tel: 800.366.2266 / Fax: 978.366.2266


- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.


MA-COM Technology Solutions for and its iffiliates reserve the right to make Cheng is to the products) our formation contained herein without notice.

The RF MOSFET Line 150W, to 150MHz, 28V

M/A-COM Products

Figure 8. 150 MHz Test Circuit (Class AB)

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples Commitment to produce in volume is not guaranteed. ailable. be

• Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

changes to the proc

Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298 Visit www.macomtech.com for additional data sheets and product information.

M/A-COM Technology Solutions incrand its affiliates reserve the right to make changes it the products) of information contained herein without notice.

6

The RF MOSFET Line 150W, to 150MHz, 28V

M/A-COM Products Released - Rev. 07.07

f MHz	\$ ₁₁		\$ ₂₁		\$ ₁₂		\$ ₂₂	
	S ₁₁	∠¢	\$ ₂₁	∠¢	S ₁₂	_ ∠ ¢	S ₂₂	∠¢
30	0.957	180	1.88	86	0.008	22	0.938	-178
40	0.956	180	1.46	81	0.010	23	0.940	179
50	0.956	180	1.17	78	0.012	33	0.936	179
60	0.956	179	1.00	76	0.013	44	0.936	177
70	0.957	179	0.86	73	0.012	54	0.960	177
80	0.957	179	0.73	72	0.010	53	0.970	179
90	0.957	179	0.64	71	0.011	45	0.952	180
100	0.957	178	0.58	67	0.015	44	0.934	178
110	0.956	178	0.55	64	0.018	53	0.947	176
120	0.957	178	0.48	64	0.019	67	0.961	177
130	0.957	178	0.43	61	0.017	75	0.973	178
140	0.958	177	0.41	60	0.016	73	0.964	178
150	0.958	177	0.37	59	0.017	60	0.978	179
160	0.957	177	0.36	56	0.023	58	0.934	178
170	0.959	177	0.34	54	0.026	67	0.923	176
180	0.958	177	0.31	51	0.028	75	0.974	175
190	0.958	176	0.30	53	0.026	82	0.986	175
200	0.959	176	0.27	52	0.024	77	0.986	176
210	0.958	176	0.27	54	0.026	67	0.988	177
220	0.960	176	0.28	52	0.032	67	0.951	175
230	0.962	176	0.24	45	0.039	70	1.020	172
240	0.960	176	0.24	44	0.038	76	0.988	171
250	0.962	175	0.21	47	0.038	81	0.980	175
260	0.962	175	0.21	44	0.036	77	0.994	175
270	0.960	175	0.20	44	0.038	72	0.980	173
280	0.963	175	0.20	43	0.043	71	0.962	172
290	0.964	175	0.19	40	0.046	74	0.952	170
300	0.965	175	0.20	42	0.049	78	0.945	170
310	0.966	174	0.18	42	0.046	79	1.010	172
320	0.963	174	0.18	45	0.049	74	0.971	170
330	0.964	174	0.16	42	0.053	74	0.930	170
340	0.966	174	0.18	46	0.055	71	0.947	169

7

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product MA-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are

Commitment to produce in volume is not guaranteed.

• North America Tel: 800.366.2266 / Fax: 978.366.2266

• Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298 ٠ Visit www.macomtech.com for additional data sheets and product information.

vailable. MA-COM Technol gy Solutions no and its difiliates reserve the right to make changes in the products) or information contained herein without notice. may be

The RF MOSFET Line 150W, to 150MHz, 28V

M/A-COM Products Released - Rev. 07.07

Table 1. Common Source S-Parameters ($v_{DS} = 26 v$, $i_D = 5 A$) continued									
f	S	S ₁₁		\$ ₂₁		\$ ₁₂		\$ ₂₂	
MHz	S ₁₁	$\angle \phi$	S ₂₁	∠¢	S ₁₂	$\angle \phi$	\$ ₂₂	$\angle \phi$	
350	0.965	174	0.17	43	0.059	74	0.964	169	
360	0.967	173	0.16	43	0.061	74	1.010	167	
370	0.968	173	0.15	43	0.063	70	1.010	167	
380	0.967	173	0.16	41	0.065	70	0.952	168	
390	0.968	173	0.16	45	0.068	72	0.970	168	
400	0.968	172	0.15	42	0.069	77	0.957	170	
410	0.967	172	0.15	44	0.070	72	1.000	165	
420	0.969	172	0.14	43	0.070	68	0.986	164	
430	0.968	172	0.13	45	0.078	65	0.980	166	
440	0.968	171	0.14	47	0.086	68	0.953	166	
450	0.969	171	0.15	45	0.087	74	0.981	166	
460	0.968	171	0.14	48	0.076	73	0.971	163	
470	0.965	171	0.13	41	0.046	75	0.980	163	
480	0.958	170	0.13	40	0.017	115	1.050	162	
490	0.954	170	0.13	37	0.041	113	1.050	163	
500	0.956	170	0.13	35	0.070	74	1.040	162	

Table 1. Common Source S-Parameters (V_{DS} = 28 V, I_D = 5 A) continued

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be valiable. Commitment to produce in volume is not guaranteed.

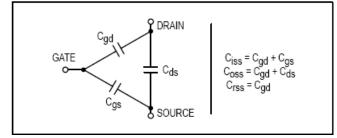
Technology Solutions • North America Tel: 800.366.2266 / Fax: 978.366.2266

- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheats and product information
- Visit www.macomtech.com for additional data sheets and product information. MA-COM Technology Solutions nor and its affiliates reserve the right to make changes to the product is join ormation contained herein without notice.

The RF MOSFET Line 150W, to 150MHz, 28V

M/A-COM Products Released - Rev. 07.07

RF POWER MOSFET CONSIDERATIONS


MOSFET CAPACITANCES

The physical structure of a MOSFET results in capacitors between the terminals. The metal oxide gate structure determines the capacitors from gate-to-drain (Cgd), and gate-to-source (Cgs). The PN junction formed during the fabrication of the RF MOSFET results in a junction capacitance from drain-to-source (Cds).

These capacitances are characterized as input (Ciss), output (Coss) and reverse transfer (Crss) capacitances on data sheets. The relationships between the inter-terminal capacitances and those given on data sheets are shown below. The

Ciss can be specified in two ways:

- 1. Drain shorted to source and positive voltage at the gate.
- 2. Positive voltage of the drain in respect to source and zero volts at the gate. In the latter case the numbers are lower. However, neither method represents the actual operating conditions in RF applications.

LINEARITY AND GAIN CHARACTERISTICS

In addition to the typical IMD and power gain data presented, Figure 5 may give the designer additional information on the capabilities of this device. The graph represents the small signal unity current gain frequency at a given drain current level. This is equivalent to fT for bipolar transistors. Since this test is performed at a fast sweep speed, heating of the device does not occur. Thus, in normal use, the higher temperatures may degrade these characteristics to some extent.

GATE CHARACTERISTICS

The gate of the RF MOSFET is a polysilicon material, and is electrically isolated from the source by a layer of oxide. The input resistance is very high — on the order of 109 ohms

 resulting in a leakage current of a few nanoamperes.
 Gate control is achieved by applying a positive voltage slightly in excess of the gate-to-source threshold voltage, VGS(th).

Gate Voltage Rating — Never exceed the gate voltage rating. Exceeding the rated VGS can result in permanent damage to the oxide layer in the gate region.

Gate Termination — The gates of these devices are essentially capacitors. Circuits that leave the gate opencircuited or floating should be avoided. These conditions can result in turn-on of the devices due to voltage build-up on the input capacitor due to leakage currents or pickup.

Gate Protection — These devices do not have an internal monolithic zener diode from gate—to—source. If gate protection is required, an external zener diode is recommended.

EQUIVALENT TRANSISTOR PARAMETER TERMINOLOGY

	Emitter Base V _(BR) CES V _{CBO} I _C ES I _{EBO} V _{BE(on)} V _{CE(sat)} C _{ob}	Drain Source Gate V(BR)DSS VDGO ID IDSS IGSS VGS(th) VDS(on) Ciss Coss gfs	
R _{CE(sat)} =	V _{CE(sat)}	r _{DS(on)} =	V _{DS(on)}

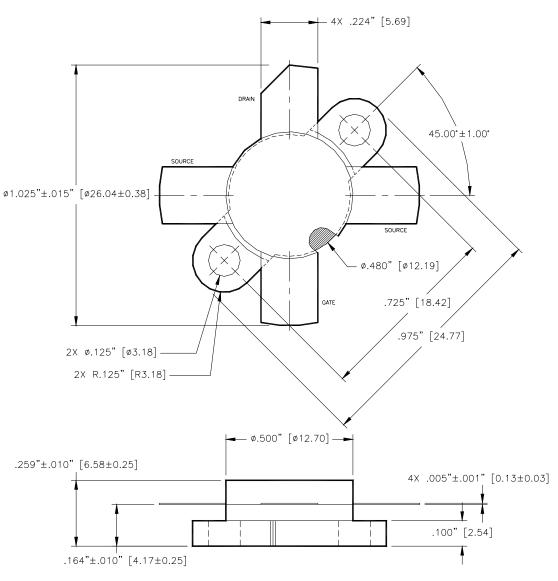
9

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. **PRELIMINARY:** Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are

ailable.

typical. Mechanical outline has been fixed. Engineering samples

Commitment to produce in volume is not gua


- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
- Visit www.macomtech.com for additional data sheets and product information.

M/A-COM Technol gy Solutions for and its difiliates reserve the right to make Changes to the products) of information contained herein without notice.

The RF MOSFET Line 150W, to 150MHz, 28V

M/A-COM Products Released - Rev. 07.07

Unless otherwise noted, tolerances are inches $\pm.005$ " [millimeters ±0.13 mm]

