

RF Power FET 150W, to 175MHz, 28V

M/A-COM Products Released - Rev. 9

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain–Source Voltage	V _{DSS}	65	Vdc
Drain–Gate Voltage	V _{DGO}	65	Vdc
Gate–Source Voltage	V _{GS}	±40	Vdc
Drain Current — Continuous	ا _D	16	Adc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	Pp	300 1.71	Watts W/∘C
Storage Temperature Range	T _{stg}	-65 to +150	°C
Operating Junction Temperature	TJ	200	°C
THERMAL CHARACTERISTICS	•	-	
Characteristic	Symbol	Max	Unit

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	R _{ejc}	0.6	°C/W

NOTE — CAUTION — MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

ailable.

be

1

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. **PRELIMINARY:** Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are

typical. Mechanical outline has been fixed. Engineering samples

Commitment to produce in volume is not gua

• North America Tel: 800.366.2266 / Fax: 978.366.2266

• Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.

M/A-COM Technology Solutions for and its affiliates reserve the right to make Changes to the products) of information contained herein without notice.

M/A-COM Products Released - Rev. 9

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS (1)					
Drain-Source Breakdown Voltage (V _{GS} = 0, I _D = 100 mA)	V(BR)DSS	65	—	—	Vdc
Zero Gate Voltage Drain Current (VDS = 28 V, VGS = 0)	IDSS	_	_	5.0	mAdc
Gate-Body Leakage Current (V _{GS} = 20 V, V _{DS} = 0)	IGSS	_	—	1.0	μAdc
ON CHARACTERISTICS (1)					
Gate Threshold Voltage (V _{DS} = 10 V, I _D = 100 mA)	V _{GS(th)}	1.0	3.0	5.0	Vdc
Drain-Source On-Voltage (V _{GS} = 10 V, I _D = 10 A)	V _{DS(on)}	0.1	0.9	1.5	Vdc
Forward Transconductance (V _{DS} = 10 V, I _D = 5.0 A)	9fs	5.0	7.0	—	mhos
DYNAMIC CHARACTERISTICS (1)					
Input Capacitance (V _{DS} = 28 V, V _{GS} = 0, f = 1.0 MHz)	Ciss	_	350	_	pF
Output Capacitance (V _{DS} = 28 V, V _{GS} = 0, f = 1.0 MHz)	Coss	_	420	_	pF
Reverse Transfer Capacitance (V _{DS} = 28 V, V _{GS} = 0, f = 1.0 MHz)	Crss	_	35	—	pF
FUNCTIONAL TESTS					
Common Source Amplifier Power Gain, f = 30; 30.001 MHz (V _{DD} = 28 V, P _{out} = 150 W (PEP), I _{DQ} = 250 mA) f = 175 MHz	G _{ps}	16	20 10		dB
Drain Efficiency (V _{DD} = 28 V, P _{out} = 150 W (PEP), f = 30; 30.001 MHz, I _{DQ} = 250 mA, I _D (Max) = 5.95 A)	η	40	45	-	%
Intermodulation Distortion (1) (V _{DD} = 28 V, P _{out} = 150 W (PEP), f = 30 MHz, f2 = 30.001 MHz, I _{DQ} = 250 mA)	IMD _(d3) IMD _(d11)		-30 -60	-28 —	dB
Load Mismatch (V _{DD} = 28 V, P _{out} = 150 W (PEP), f1 = 30; 30.001 MHz, I _{DQ} = 250 mA, VSWR 30:1 at all Phase Angles)	ψ t = 150 W (PEP), f1 = 30; 30.001 MHz, No Degradation in Output Power				
CLASS A PERFORMANCE					
Intermodulation Distortion (1) and Power Gain (V _{DD} = 28 V, P _{out} = 50 W (PEP), f1 = 30 MHz, f2 = 30.001 MHz, I _{DQ} = 4.0 A)	G _{PS} IMD _(d3) IMD _(d9-13)		23 -50 -75		dB

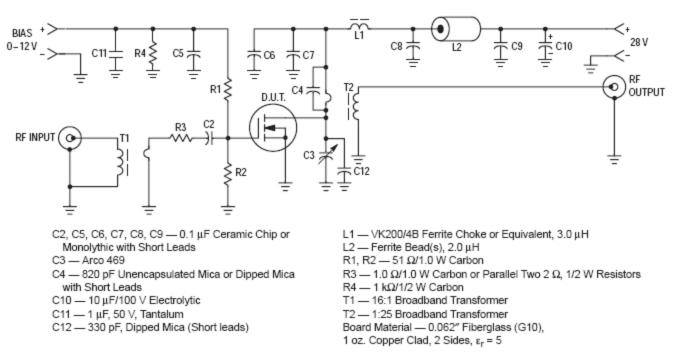
NOTE:

2

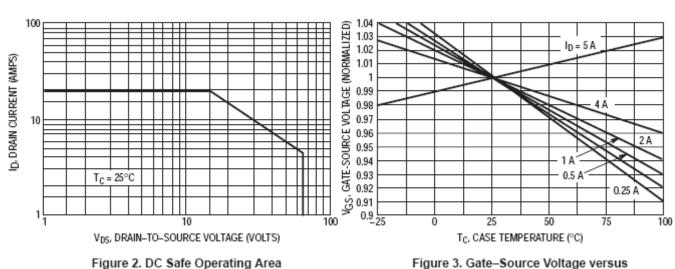
1. To MIL-STD-1311 Version A, Test Method 2204B, Two Tone, Reference Each Tone.

- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.
- Visit www.macomtech.com for additional data sheets and product information

MA-COM Technol gy Solutions no and its difiliates reserve the right to make ching is to the products) or information contained herein without notice.


[•] North America Tel: 800.366.2266 / Fax: 978.366.2266

Technology So

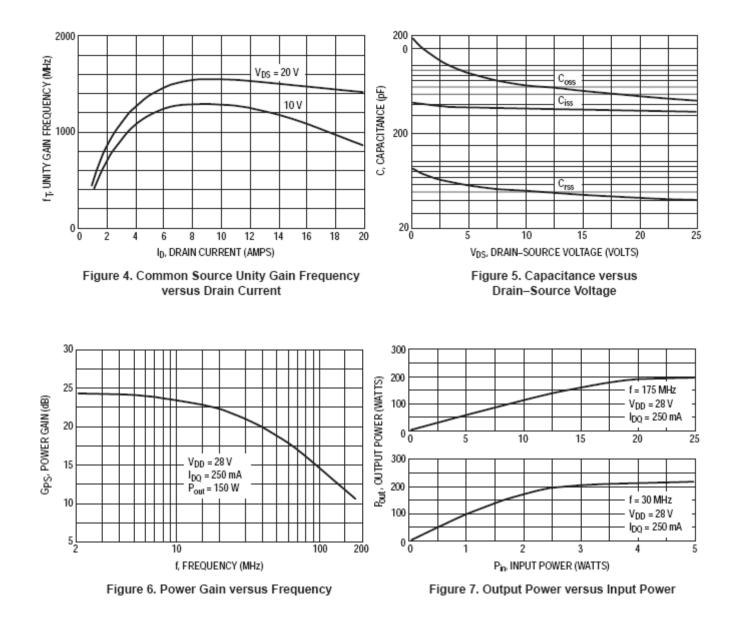

M/A-COM Products

Released - Rev. 9

RF Power FET 150W, to 175MHz, 28V

Case Temperature

3

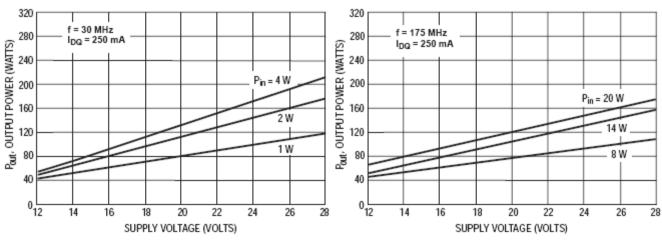

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions • North America Tel: 800.366.2266 / Fax: 978.366.2266 is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300 Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298 PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Visit www.macomtech.com for additional data sheets and product information. Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples ailable. M/A-COM Technology Solutions incrand its iffiliates reserve the right to make one no situ the products) ovin ormation contained herein without notice. be Commitment to produce in volume is not gua Crit ngus

TYPICAL CHARACTERISTICS

RF Power FET 150W, to 175MHz, 28V

M/A-COM Products Released - Rev. 9

Commitment to produce in volume is not gua


- ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be exailable.
- North America Tel: 800.366.2266 / Fax: 978.366.2266
 - Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
 - Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 - Visit www.macomtech.com for additional data sheets and product information.

MA-COM Technol gy Solutions no and its iffiliates reserve the right to make on nois to the products) of information on aired herein without notice.

RF Power FET 150W, to 175MHz, 28V

M/A-COM Products Released - Rev. 9

TYPICAL CHARACTERISTICS

Figure 8. Output Power versus Supply Voltage

Figure 9. Output Power versus Supply Voltage

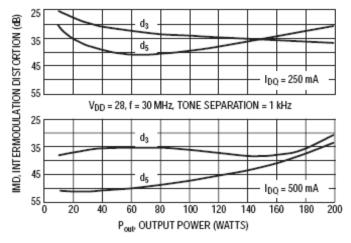


Figure 10. IMD versus Pout (PEP)

5

ADVANCED: Data Sheets contain information regarding a product W/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or to produce in volume is not guaranteed. Commitment to produce in volume is not guaranteed. MA-COM Technology Solutions are typical. Mechanical outline has been fixed. Engineering samples and/or to the wave be exailable. Commitment to produce in volume is not guaranteed. MA-COM Technology Solutions for and its iffiliates reserve the right to make Changes for the includes Joint ormation contained herein without notice.

M/A-COM Products Released - Rev. 9

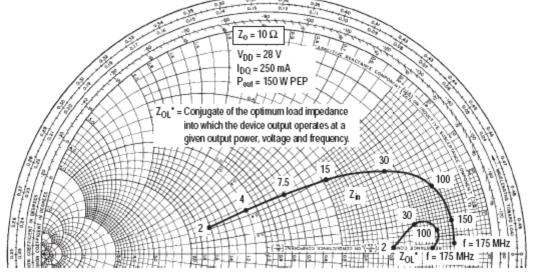


Figure 11. Input and Output Impedances

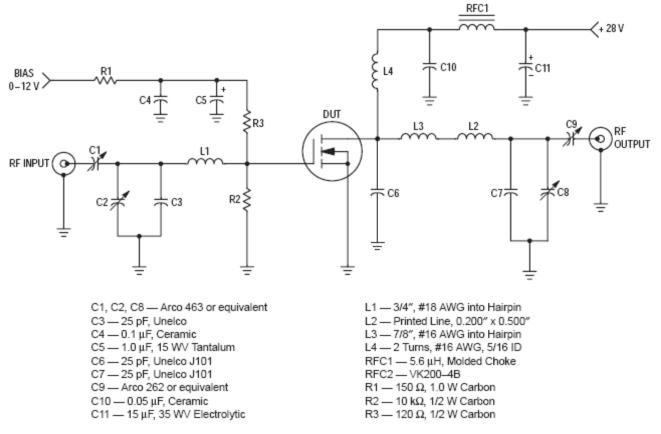


Figure 12. 175 MHz Test Circuit (Class AB)

- 6
- ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or protot statemay be valiable. Commitment to produce in volume is not guaranteed.
- North America Tel: 800.366.2266 / Fax: 978.366.2266
 - Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
 - Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.

MA-COM Technol gy Solutions for and its difiliates reserve the right to make Changes for the procled s) our ormation contained herein without notice.

RF Power FET 150W, to 175MHz, 28V

M/A-COM Products

Released - Rev. 9

Table 1. Common Source S–Parameters (V _{DS} = 24 V, I _D = 5 A)									
f	\$ ₁₁			\$ ₂₁		12	\$ ₂₂		
MHz	S ₁₁	φ	\$ ₂₁	φ	\$ ₁₂	φ	\$ ₂₂	φ	
30	0.916	-177	4.23	83	0.008	32	0.876	-177	
40	0.919	-178	3.23	76	0.009	39	0.885	178	
50	0.922	-178	2.55	72	0.010	45	0.914	-180	
60	0.923	-179	2.14	68	0.010	46	0.893	179	
70	0.927	-179	1.77	63	0.011	48	0.878	179	
80	0.929	-179	1.48	61	0.013	53	0.864	180	
90	0.931	-180	1.28	60	0.015	61	0.850	180	
100	0.934	-180	1.15	55	0.016	66	0.893	178	
110	0.935	180	1.05	53	0.016	69	0.913	177	
120	0.939	180	0.91	51	0.017	69	0.930	180	
130	0.941	179	0.82	48	0.019	67	0.916	-180	
140	0.943	179	0.76	46	0.022	68	0.926	179	
150	0.946	179	0.67	42	0.024	70	0.940	177	
160	0.946	179	0.63	40	0.025	73	0.915	178	
170	0.948	178	0.57	39	0.024	78	0.891	178	
180	0.949	178	0.52	37	0.026	75	0.906	178	
190	0.950	178	0.49	37	0.028	74	0.899	176	
200	0.950	177	0.45	35	0.030	78	0.915	176	
210	0.938	177	0.43	31	0.043	108	0.966	174	
220	0.958	178	0.39	33	0.029	61	0.972	175	
230	0.961	177	0.36	27	0.038	77	1.033	174	
240	0.960	177	0.36	28	0.036	76	0.943	174	
250	0.961	176	0.32	30	0.038	77	0.912	175	
260	0.962	176	0.30	31	0.040	76	0.918	174	
270	0.961	176	0.27	30	0.044	77	0.933	171	
280	0.963	176	0.26	30	0.045	79	0.943	172	
290	0.964	175	0.25	25	0.045	78	0.940	172	
300	0.965	175	0.26	27	0.047	77	0.930	172	
310	0.966	175	0.25	27	0.051	78	0.977	172	
320	0.964	175	0.24	26	0.053	75	0.947	171	
330	0.966	174	0.22	21	0.056	75	0.946	170	
340	0.967	174	0.23	26	0.056	75	0.944	170	
350	0.967	174	0.22	24	0.058	78	0.946	171	
360	0.965	174	0.21	28	0.062	74	0.956	171	
370	0.966	174	0.20	28	0.048	61	0.968	170	
380	0.968	173	0.20	27	0.053	74	0.931	168	
390	0.970	173	0.18	31	0.063	74	0.962	168	
400	0.970	173	0.17	26	0.071	79	0.965	172	
410	0.970	172	0.17	29	0.076	78	0.982	169	
420	0.971	172	0.17	30	0.076	76	0.956	167	
430	0.970	172	0.15	29	0.070	76	0.912	165	
440	0.970	172	0.13	32	0.070	76	0.933	167	

7

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.

• North America Tel: 800.366.2266 / Fax: 978.366.2266

• Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298 ٠ Visit www.macomtech.com for additional data sheets and product information.

PRELIMINARY: Data Sheets contain information regarding a product MA-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are Commitment to produce in volume is not guaranteed. vailable. may be

MA-COM Technol gy Solution since and its difiliates reserve the right to make changes to the products of information contained herein without notice.

M/A-COM Products Released - Rev. 9

f	S	s ₁₁ s ₂₁		\$ ₁₂		\$ ₂₂		
MHz	S ₁₁	φ	S ₂₁	φ	S ₁₂	φ	S ₂₂	φ
450	0.970	171	0.15	31	0.081	76	0.967	167
460	0.970	171	0.15	32	0.090	73	0.982	164
470	0.969	170	0.15	30	0.095	77	0.945	165
480	0.964	170	0.16	34	0.099	80	0.956	165
490	0.960	170	0.15	31	0.107	75	0.947	163
500	0.959	170	0.15	23	0.103	68	0.962	163

Table 1. Common Source S-Parameters (V _{DS} =	24 V. In	= 5 A) continued
--	----------	------------------

Table 2. Common Source S-Parameters (V_{DS} = 28 V, I_D = 5 A)

f	S	11	S	\$ ₂₁		12	S	22
MHz	S ₁₁	φ	S ₂₁	φ	\$ ₁₂	φ	S ₂₂	φ
30	0.914	-177	4.60	82	0.007	25	0.874	-176
40	0.915	-178	3.51	76	0.008	26	0.879	-179
50	0.918	-178	2.76	71	0.009	34	0.888	-179
60	0.920	-178	2.32	67	0.010	45	0.881	179
70	0.924	-179	1.92	62	0.010	56	0.887	179
80	0.927	-179	1.61	60	0.009	62	0.899	-179
90	0.930	-179	1.39	58	0.010	61	0.874	-177
100	0.933	-180	1.23	53	0.012	57	0.875	-179
110	0.934	-180	1.13	51	0.015	63	0.884	179
120	0.938	180	0.98	49	0.017	73	0.926	179
130	0.940	180	0.88	46	0.018	81	0.959	-179
140	0.942	179	0.81	44	0.018	82	0.966	-179
150	0.945	179	0.71	40	0.018	77	0.961	-179
160	0.946	179	0.67	38	0.021	73	0.910	-179
170	0.948	178	0.61	37	0.023	77	0.871	179
180	0.950	178	0.54	35	0.026	78	0.912	178
190	0.950	178	0.52	34	0.029	76	0.959	177
200	0.952	178	0.47	33	0.034	64	0.971	178
210	0.949	177	0.46	28	0.067	17	1.023	-178
220	0.953	178	0.41	31	0.019	94	0.954	177
230	0.959	177	0.38	26	0.037	76	1.014	174
240	0.960	177	0.37	25	0.040	79	0.943	174

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.

• North America Tel: 800.366.2266 / Fax: 978.366.2266

• Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.

PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology V Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples end/or test data may be vailable. MA-CO Commitment to produce in volume is not guaranteerd.

MA-COM Technol gy Solutions no and its difiliates reserve the right to make ching is to the products) or information contained herein without notice.

M/A-COM Products Released - Rev. 9

Table 2. Common Source S-Parameters (V_{DS} = 28V, I_D = 5A) - Con't.

f	s	S ₁₁		21	S	12	S	\$ ₂₂	
MHz	S ₁₁	φ	S ₂₁	φ	S ₁₂	φ	S ₂₂	φ	
250	0.961	177	0.33	27	0.042	84	0.972	175	
260	0.962	176	0.30	27	0.041	86	0.969	176	
270	0.961	176	0.29	27	0.041	83	0.951	175	
280	0.963	176	0.27	27	0.042	80	0.929	174	
290	0.964	175	0.26	23	0.045	79	0.930	172	
300	0.965	175	0.27	25	0.051	81	0.963	171	
310	0.966	175	0.26	24	0.052	83	1.012	173	
320	0.965	175	0.25	23	0.053	81	0.984	171	
330	0.966	174	0.23	19	0.055	78	0.955	172	
340	0.967	174	0.24	25	0.054	76	0.929	171	
350	0.967	174	0.22	22	0.057	79	0.917	170	
360	0.967	174	0.21	26	0.060	91	0.978	169	
370	0.967	174	0.20	26	0.084	89	1.030	167	
380	0.969	173	0.20	23	0.081	82	0.994	170	
390	0.970	173	0.19	29	0.072	80	0.963	170	
400	0.970	173	0.17	25	0.069	80	0.951	172	
410	0.970	172	0.17	27	0.072	71	0.985	167	
420	0.972	172	0.16	28	0.078	68	0.970	165	
430	0.971	172	0.15	27	0.084	70	0.953	165	
440	0.971	171	0.13	29	0.086	74	0.949	168	
450	0.971	171	0.15	29	0.087	79	0.962	167	
460	0.970	171	0.15	32	0.081	72	0.976	164	
470	0.969	170	0.15	29	0.079	65	0.969	164	
480	0.964	170	0.16	32	0.081	57	0.972	165	
490	0.959	170	0.15	29	0.081	54	0.976	165	
500	0.958	170	0.15	21	0.086	58	0.953	167	

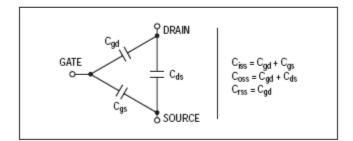
ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product MA-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples commitment to produce in volume is not guaranteed. vailable.

may be

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
- Visit www.macomtech.com for additional data sheets and product information.

MA-COM Technol gy Solutions no and its difiliates reserve the right to make changes in the products) or information contained herein without notice.

M/A-COM Products Released - Rev. 9


RF POWER MOSFET CONSIDERATIONS

MOSFET CAPACITANCES

The physical structure of a MOSFET results in capacitors between the terminals. The metal oxide gate structure determines the capacitors from gate-to-drain (C_{gd}), and gate-to-source (C_{gs}). The PN junction formed during the fabrication of the RF MOSFET results in a junction capacitance from drain-to-source (C_{ds}).

These capacitances are characterized as input (C_{iss}), output (C_{oss}) and reverse transfer (C_{rss}) capacitances on data sheets. The relationships between the inter-terminal capacitances and those given on data sheets are shown below. The C_{iss} can be specified in two ways:

- Drain shorted to source and positive voltage at the gate.
- Positive voltage of the drain in respect to source and zero volts at the gate. In the latter case the numbers are lower. However, neither method represents the actual operating conditions in RF applications.

LINEARITY AND GAIN CHARACTERISTICS

In addition to the typical IMD and power gain data presented, Figure 5 may give the designer additional information on the capabilities of this device. The graph represents the small signal unity current gain frequency at a given drain current level. This is equivalent to f_T for bipolar transistors. Since this test is performed at a fast sweep speed, heating of the device does not occur. Thus, in normal use, the higher temperatures may degrade these characteristics to some extent.

DRAIN CHARACTERISTICS

One figure of merit for a FET is its static resistance in the full-on condition. This on-resistance, $V_{DS(on)}$, occurs in the linear region of the output characteristic and is specified under specific test conditions for gate-source voltage and drain current. For MOSFETs, $V_{DS(on)}$ has a positive temperature coefficient and constitutes an important design consideration at high temperatures, because it contributes to the power dissipation within the device.

GATE CHARACTERISTICS

The gate of the RF MOSFET is a polysilicon material, and is electrically isolated from the source by a layer of oxide. The input resistance is very high — on the order of 10⁹ ohms resulting in a leakage current of a few nanoamperes.

Gate control is achieved by applying a positive voltage slightly in excess of the gate-to-source threshold voltage, V_{GS(th)}.

Gate Voltage Rating — Never exceed the gate voltage rating. Exceeding the rated V_{GS} can result in permanent damage to the oxide layer in the gate region.

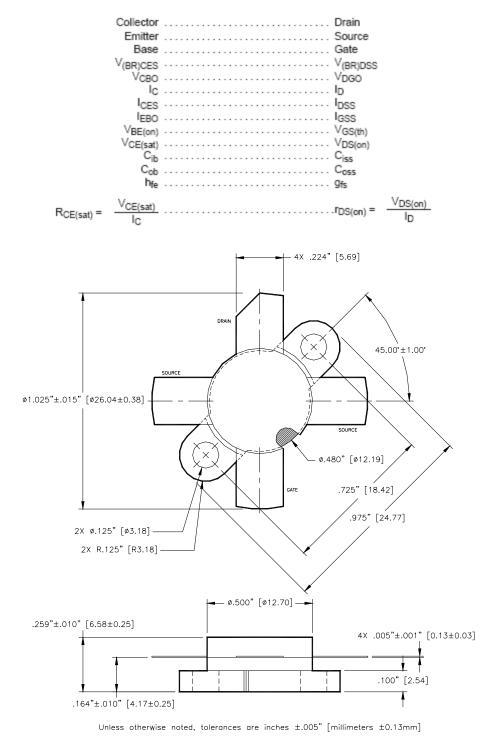
Gate Termination — The gates of these devices are essentially capacitors. Circuits that leave the gate open-circuited or floating should be avoided. These conditions can result in turn-on of the devices due to voltage build-up on the input capacitor due to leakage currents or pickup.

Gate Protection — These devices do not have an internal monolithic zener diode from gate-to-source. If gate protection is required, an external zener diode is recommended.

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be vailable.

Commitment to produce in volume is not gua

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.


M/A-COM Technology Solutions incrandits iffiliates reserve the right to make changes fu the products) of information consistend herein without notice.

M/A-COM Products Released - Rev. 9

EQUIVALENT TRANSISTOR PARAMETER TERMINOLOGY

11

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.
PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or prototype measurements to produce in volume is not guaranteed.
MACOM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or prototype measurements to produce in volume is not guaranteed.
MACOM Technology Solutions have inder development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or prototype measurements. Commitment to produce in volume is not guaranteed.
MACOM Technology Solutions have inder development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering tests. Specific