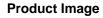
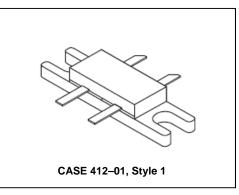
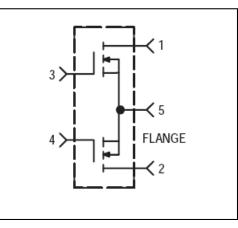
The RF MOSFET Line 40W, 500MHz, 28V




M/A-COM Products Released - Rev. 07.07


Designed primarily for wideband large–signal output and driver stages to 30 - 500 MHz.

N-Channel enhancement mode MOSFET

- Push-pull configuration reduces even numbered harmonics
- Guaranteed performance at 500 MHz, 28 Vdc
 - Output power = 40 W Gain = 14 dB Efficiency = 50%
- Typical performance at 175 MHz, 28 Vdc Output power = 40 W Gain = 17 dB
 - Efficiency = 60%
- Excellent thermal stability, ideally suited for Class A operation
- Facilitates manual gain control, ALC and modulation techniques
- 100% tested for load mismatch at all phase angles with 30:1 VSWR
- Low Crss 4.0 pF @ VDS = 28 V

MAXIMUM RATINGS (TJ = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Drain–Gate Voltage	VDSS	65	Vdc
Drain–Gate Voltage (R_{GS} = 1.0 M Ω)	VDGR	65	Vdc
Gate-Source Voltage	VGS	± 20	Adc
Drain Current — Continuous	۱ _D	8.0	ADC
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	175 1.0	Watts °C/W
Storage Temperature Range	T _{stg}	-65 to +150	°C
Operating Junction Temperature	Tj	200	°C
THERMAL CHARACTERISTICS			
Thermal Resistance — Junction to Case	R _{θJC}	1.0	°C/W

NOTE — <u>CAUTION</u> — MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

be

- 1
- ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology

Solutions has under development. Performance is based on engineering tests. Specifications are

typical. Mechanical outline has been fixed. Engineering samples

Commitment to produce in volume is not gua

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
- Visit www.macomtech.com for additional data sheets and product information.

The RF MOSFET Line 40W, 500MHz, 28V

Technology Solutions

M/A-COM Products

Released - Rev. 07.07

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS (1)	· · ·				•
Drain–Source Breakdown Voltage (V _{GS} = 0 Vdc, I _D = 5.0 mA)	V(BR)DSS	65	_	_	Vdc
Zero Gate Voltage Drain Current (V _{DS} = 28 Vdc, V _{GS} = 0 Vdc)	IDSS	_	_	0.5	mA
Gate-Source Leakage Current (V _{GS} = 20 Vdc, V _{DS} = 0 Vdc)	IGSS	_	_	1.0	μA
ON CHARACTERISTICS (1)					
Gate Threshold Voltage (V _{DS} = 10 Vdc, I _D = 25 mA)	V _{GS(th)}	1.5	3.0	4.5	Vdc
Forward Transconductance (V _{DS} = 10 Vdc, I _D = 1.5 A)	9fs	0.9	1.1	_	mS
DYNAMIC CHARACTERISTICS (1)	I				
Input Capacitance (V _{DS} = 28 Vdc, V _{GS} = 0 Vdc, f = 1.0 MHz)	Ciss	_	28	_	pF
Output Capacitance (V _{DS} = 28 Vdc, V _{GS} = 0 Vdc, f = 1.0 MHz)	C _{oss}	_	30		pF
Reverse Transfer Capacitance (V _{DS} = 28 Vdc, V _{GS} = 0 Vdc, f = 1.0 MHz)	C _{rss}	_	4.0	_	pF
FUNCTIONAL CHARACTERISTICS (2)					
Common Source Power Gain (V _{DD} = 28 Vdc, P _{out} = 40 W, f = 500 MHz, I _{DQ} = 100 mA)	Gps	14	16	_	dB
Drain Efficiency (V _{DD} = 28 Vdc, P _{out} = 40 W, f = 500 MHz, I _{DQ} = 100 mA)	η	50	55	_	%
Electrical Ruggedness (V _{DD} = 28 Vdc, P _{out} = 40 W, f = 500 MHz, I _{DQ} = 100 mA) Load VSWR = 30:1, All phase angles at frequency of test				er	
Series Equivalent Input Impedance (V _{DD} = 28 Vdc, P _{out} = 40 W, f = 500 MHz, I _{DQ} = 100 mA)	Z _{in}	_	2.88 –j7.96	_	Ohms
Series Equivalent Output Impedance (V _{DD} = 28 Vdc, P _{out} = 40 W, f = 500 MHz, I _{DQ} = 100 mA)	Z _{out}	_	6.12 –j9.43	_	Ohms

(1) Each transistor chip measured separately.

(2) Both transistor chips operating in a push-pull amplifier.

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples commitment to produce in volume is not guaranteed. vailable.

y be

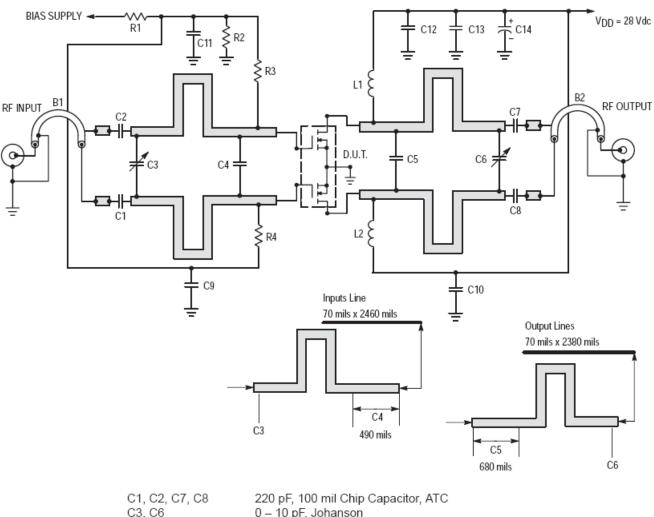
• North America Tel: 800.366.2266 / Fax: 978.366.2266

• Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

Visit www.macomtech.com for additional data sheets and product information. MA-COM Technol gy Solutions no and its difiliates reserve the right to make ching is to the products) or information contained herein without notice.

2

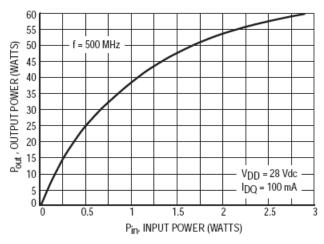

a

3

The RF MOSFET Line 40W, 500MHz, 28V

M/A-COM Products Released - Rev. 07.07

C1, C2, C7, C8	220 pF, 100 mil Chip Capacitor, ATC
C3, C6	0 – 10 pF, Johanson
C4	27 pF, 100 mil Chip Capacitor, ATC
C5	22 pF, 100 mil Chip Capacitor, ATC
C9, C10, C11, C12	0.01 μF Blue Capacitor
C13	470 pF, 100 mil Chip Capacitor, ATC
C14	50 μF, 50 V Electrolytic Capacitor
L1, L2	8 Turns #20 AWG, 0.100 mils ID
B1, B2	6" long, ID = 550 mils, 50 Ω Semi–Rigid Coax
R1	1.0 kΩ 1/2 Watt
R2	10 kΩ 1/2 Watt
R3, R4	45 Ω 1/2 Watt
Board Material - Teflon	® Fiberglass
Dielectric Thickness =	0.30", ε _r = 2.55 Copper Clad, 2.0 oz. Copper


Figure 1. MRF166W 500 MHz Test Circuit Schematic

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions • North America Tel: 800.366.2266 / Fax: 978.366.2266 is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. • Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300 Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298 PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Visit www.macomtech.com for additional data sheets and product information. Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples Commitment to produce in volume is not guaranteed. ailable. MA-COM Technol gy Solutions no and its difiliates reserve the right to make ching is to the products) or information contained herein without notice. be

The RF MOSFET Line 40W, 500MHz, 28V

M/A-COM Products Released - Rev. 07.07

20 f = 500 MHz Pout, OUTPUT POWER (WATTS) 16 12 8 VDD = 13.5 Vdc I_{DO} = 100 mA 0 0.4 0.8 1.6 2.4 2.8 0 1.2 2 Pin, INPUT POWER (WATTS)

24

Figure 2. Output Power versus Input Power, 28 Vdc

Figure 3. Output Power versus Input Power, 13.5 Vdc

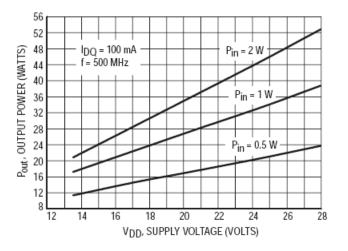


Figure 4. Output Power versus Supply Voltage

PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology

typical. Mechanical outline has been fixed. Engineering samples Commitment to produce in volume is not guaranteed.

Solutions has under development. Performance is based on engineering tests. Specifications are

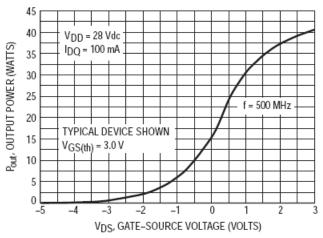


Figure 5. Output Power versus Gate Voltage

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions • North America Tel: 800.366.2266 / Fax: 978.366.2266 is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.

ailable.

be

- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300 ٠
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
- Visit www.macomtech.com for additional data sheets and product information.

M/A-COM Technology Solutions incrand its affiliates reserve the right to make changes it the products) of information contained herein without notice. changes to the proc

The RF MOSFET Line 40W, 500MHz, 28V

M/A-COM Products Released - Rev. 07.07

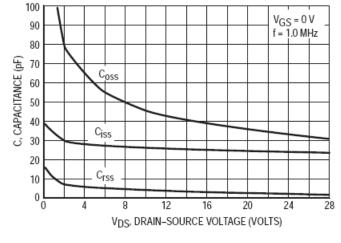
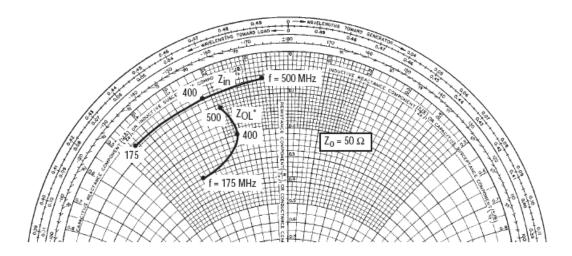



Figure 6. Capacitance versus Voltage

V_{DD} = 28 Vdc, I_{DO} = 100 mA, P_{out} = 40 W

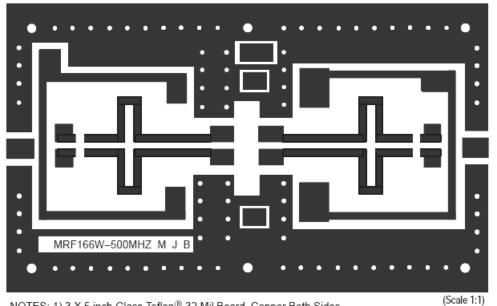
f MHz	Z _{in} Ohms	Z _{OL} * Ohms
175	3.7 – j 22.4	15.2 – j 16.6
400	3.6 – j 10.99	10.3 – j 7.99
500	2.88 – j 7.96	6.12 – j 9.43

Table 1. Input and Output Impedances

ZOL* = Conjugate of the optimum load impedance into which the device output operates at a given output power, voltage and frequency.

NOTE: Input and output impedance values given are measured from gate to gate and drain to drain respectively.

Figure 7. Series Equivalent Input/Output Impedance


5

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be valiable. Commitment to produce in volume is not guaranteed.

M/A-COM Products Released - Rev. 07.07

NOTES: 1) 3 X 5 inch Glass Teflon[®] 32 Mil Board, Copper Both Sides 2) Small Holes are 40 Mils ID and Plated Through

3) Large Holes are 140 Mils ID and Plated Through

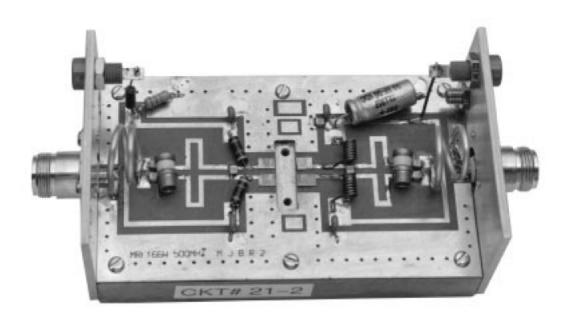


Figure 9. MRF166W Test Fixture

6

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are updated by typical. Mechanical outline has been fixed. Engineering samples molyconest on the produce in volume is not guaranteed. Commitment to produce in volume is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are updated by the product information data sheets and product information. M/A-COM Technology Solutions has under development in the produce in volume is not guaranteed. M/A-COM Technology Solutions has under development without notice.

The RF MOSFET Line 40W, 500MHz, 28V

M/A-COM Products

Released - Rev. 07.07

	Table 1. Common Sou								
f MH=	\$11		\$21		\$12		\$22		
MHz	\$ ₁₁	¢	\$ ₂₁	¢	\$ ₁₂	¢	\$ ₂₂	¢	
30	0.554	-85	20.30	128	0.044	28	0.628	-121	
40	0.775	-113	20.00	113	0.040	26	0.632	-123	
50	0.758	-124	17.50	107	0.041	20	0.652	-135	
60	0.711	-132	14.60	100	0.050	20	0.570	-135	
70	0.751	-139	12.70	100	0.042	11	0.666	-145	
80	0.742	-143	11.30	95	0.043	9	0.666	-149	
90	0.724	-146	10.00	92	0.042	8	0.657	-151	
100	0.730	-149	8.97	90	0.042	6	0.663	-154	
110	0.735	-151	8.29	87	0.043	3	0.683	-156	
120	0.732	-153	7.53	84	0.042	2	0.666	-158	
130	0.734	-155	7.01	83	0.042	1	0.688	-159	
140	0.740	-156	6.57	81	0.043	0	0.701	-160	
150	0.747	-157	6.01	78	0.042	-2	0.688	-162	
160	0.748	-159	5.66	76	0.041	-4	0.715	-162	
170	0.741	-160	5.22	76	0.040	-4	0.690	-161	
180	0.746	-160	4.94	74	0.041	-4	0.719	-164	
190	0.753	-161	4.67	73	0.041	-6	0.725	-165	
200	0.756	-162	4.51	70	0.040	-7	0.729	-166	
210	0.755	-162	4.15	69	0.039	-8	0.727	-165	
220	0.759	-163	3.91	68	0.039	-8	0.724	-166	
230	0.767	-163	3.75	65	0.039	-10	0.751	-169	
240	0.769	-164	3.56	64	0.038	-12	0.733	-167	
250	0.766	-164	3.41	63	0.037	-12	0.726	-167	
260	0.767	-165	3.26	63	0.035	-10	0.725	-167	
270	0.773	-165	3.07	61	0.035	-10	0.725	-167	
280	0.777	-165	3.03	61	0.035	-11	0.753	-167	
290	0.777	-166	2.89	58	0.034	-13	0.732	-169	
300	0.782	-166	2.80	57	0.034	-11	0.744	-169	
310	0.788	-166	2.66	57	0.034	-12	0.764	-169	
320	0.794	-167	2.54	55	0.033	-12	0.760	-167	
330	0.796	-167	2.47	54	0.032	-13	0.787	-169	
340	0.795	-168	2.38	54	0.031	-13	0.753	-170	
350	0.799	-168	2.27	52	0.030	-11	0.772	-168	
360	0.804	-168	2.17	51	0.030	-11	0.782	-169	
370	0.805	-168	2.15	50	0.030	-11	0.796	-169	
380	0.807	-169	2.06	48	0.029	-12	0.782	-170	
390	0.812	-169	2.00	48	0.028	-12	0.796	-170	
400	0.818	-170	1.91	47	0.027	-10	0.784	-168	
410	0.821	-170	1.86	46	0.029	-11	0.830	-170	
420	0.821	-170	1.83	44	0.028	-11	0.823	-171	
430	0.822	-171	1.74	44	0.026	-9	0.791	-170	
440	0.826	-171	1.67	43	0.025	-7	0.788	-170	

7

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.

• North America Tel: 800.366.2266 / Fax: 978.366.2266

• Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298 ٠ Visit www.macomtech.com for additional data sheets and product information.

PRELIMINARY: Data Sheets contain information regarding a product MA-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are Commitment to produce in volume is not guaranteed. vailable. may be

MA-COM Technol gy Solutions no and its difiliates reserve the right to make changes in the products) or information contained herein without notice.

M/A-COM Products Released - Rev. 07.07

f	\$ ₁₁	s ₁₁ s ₂₁	\$ ₁₂		\$ ₂₂			
MHz	\$ ₁₁	φ	\$ ₂₁	φ	\$ ₁₂	φ	\$ ₂₂	φ
450	0.830	-171	1.68	42	0.025	-7	0.820	-170
460	0.831	-172	1.64	41	0.026	-10	0.843	-174
470	0.832	-172	1.54	41	0.025	-7	0.827	-173
480	0.835	-173	1.50	39	0.024	-3	0.836	-172
490	0.835	-173	1.43	38	0.024	1	0.835	-171
500	0.823	-174	1.43	37	0.025	3	0.849	-172
600	0.874	-176	1.12	29	0.003	-171	0.873	-176
700	0.910	-179	0.86	23	0.013	89	0.867	-177
800	0.932	179	0.74	18	0.035	61	0.904	178
900	0.966	176	0.63	12	0.029	68	0.897	179
1000	0.975	172	0.54	5	0.042	49	0.953	174

Table 1. Common Source S-Parameters (VDS = 24 V, ID = 230 mA) (continued)

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples major test dotte may be vailable. Commitment to produce in volume is not guaranteed.

8

• North America Tel: 800.366.2266 / Fax: 978.366.2266

- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.

MA-COM Technol gy Solutions no and its difiliates reserve the right to make changes in the products) or information contained herein without notice.

M/A-COM Products

Released - Rev. 07.07

	Table 2. Common Source S–Parameters (V_{DS} = 28 V, I_{D} = 250 mA)								
f	S-	11	S	\$ ₂₁	S	12	\$ ₂₂		
MHz	\$ ₁₁	φ	\$ ₂₁	φ	\$ ₁₂	φ	\$ ₂₂	φ	
30	0.601	-86	22.20	128	0.040	29	0.796	-119	
40	0.783	-112	21.20	114	0.037	27	0.616	-122	
50	0.764	-122	18.50	108	0.038	21	0.637	-133	
60	0.727	-131	15.50	101	0.045	21	0.574	-135	
70	0.759	-138	13.50	100	0.039	12	0.648	-143	
80	0.751	-142	12.10	95	0.040	9	0.649	-148	
90	0.732	-146	10.70	93	0.040	8	0.641	-150	
100	0.737	-149	9.55	90	0.040	6	0.648	-153	
110	0.741	-150	8.81	88	0.040	4	0.670	-155	
120	0.738	-153	8.01	85	0.040	3	0.654	-156	
130	0.740	-154	7.47	83	0.040	2	0.675	-157	
140	0.747	-156	7.01	82	0.040	1	0.684	-158	
150	0.754	-157	6.43	79	0.040	-2	0.669	-161	
160	0.757	-159	6.07	77	0.039	-3	0.693	-161	
170	0.749	-159	5.59	76	0.038	-3	0.670	-161	
180	0.753	-160	5.28	75	0.039	-4	0.701	-163	
190	0.759	-161	4.99	73	0.039	-5	0.712	-164	
200	0.761	-161	4.81	70	0.038	-7	0.719	-165	
210	0.759	-162	4.44	70	0.037	-6	0.713	-163	
220	0.762	-163	4.18	69	0.037	-7	0.709	-164	
230	0.771	-164	4.03	66	0.037	-9	0.733	-167	
240	0.775	-164	3.83	65	0.036	-10	0.715	-165	
250	0.774	-165	3.69	64	0.035	-10	0.713	-166	
260	0.775	-165	3.52	63	0.034	-10	0.715	-168	
270	0.780	-165	3.29	61	0.034	-10	0.712	-168	
280	0.782	-165	3.24	61	0.034	-11	0.741	-168	
290	0.781	-166	3.10	59	0.032	-12	0.722	-168	
300	0.785	-166	3.01	58	0.033	-11	0.733	-168	

vailable.

may be

- ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product MA-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are Commitment to produce in volume is not guaranteed.
- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298 ٠
- Visit www.macomtech.com for additional data sheets and product information.

MA-COM Technol gy Solutions no and its difiliates reserve the right to make changes in the products) or information contained herein without notice.

Technology Solutions

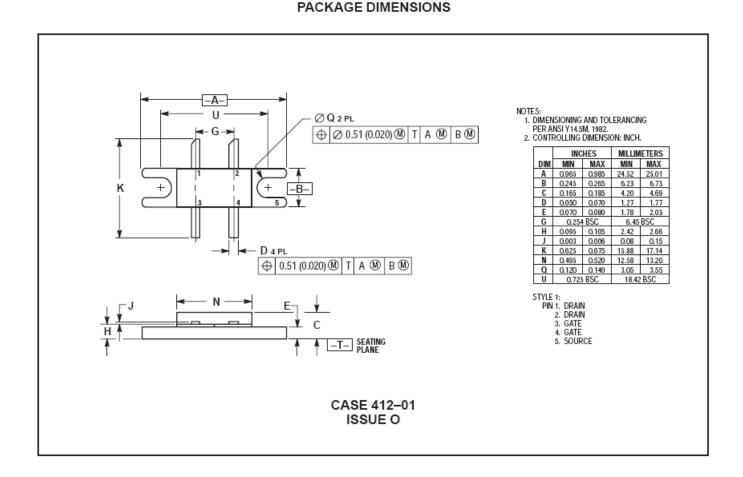
M/A-COM Products Released - Rev. 07.07

Table 2. Common Source S–Parameters (V_{DS} = 28 V, I_{D} = 250 mA) (continued)									
f	s	11	S	21	S-	12	s	22	
MHz	\$ ₁₁	φ	\$ ₂₁	φ	\$ ₁₂	φ	\$ ₂₂	φ	
310	0.792	-167	2.87	57	0.032	-12	0.750	-167	
320	0.798	-167	2.75	56	0.032	-12	0.739	-166	
330	0.801	-168	2.68	53	0.031	-13	0.760	-170	
340	0.800	-168	2.58	53	0.030	-14	0.727	-172	
350	0.803	-169	2.44	52	0.029	-12	0.755	-170	
360	0.807	-169	2.33	50	0.029	-12	0.772	-171	
370	0.808	-169	2.30	50	0.029	-12	0.787	-169	
380	0.809	-169	2.19	48	0.028	-13	0.768	-170	
390	0.813	-170	2.14	49	0.027	-13	0.775	-169	
400	0.820	-170	2.06	47	0.026	-11	0.765	-167	
410	0.823	-170	2.02	45	0.027	-12	0.805	-170	
420	0.823	-171	1.98	44	0.026	-13	0.794	-173	
430	0.824	-171	1.89	44	0.025	-12	0.778	-174	
440	0.828	-172	1.83	43	0.024	-11	0.785	-173	
450	0.832	-172	1.81	41	0.024	-10	0.812	-172	
460	0.833	-172	1.75	41	0.025	-13	0.838	-175	
470	0.835	-172	1.65	41	0.023	-11	0.817	-173	
480	0.840	-172	1.60	40	0.022	-10	0.818	-172	
490	0.844	-173	1.55	38	0.022	-10	0.819	-172	
500	0.845	-173	1.56	37	0.022	-10	0.833	-173	
600	0.879	-176	1.21	29	0.002	138	0.870	-176	
700	0.912	-179	0.92	23	0.017	77	0.862	-176	
800	0.935	179	0.79	18	0.039	58	0.887	179	
900	0.966	176	0.67	11	0.030	69	0.892	179	
1000	0.974	172	0.57	5	0.043	49	0.945	175	

vailable.

may be

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product MA-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are Commitment to produce in volume is not guaranteed.


- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298 ٠ Visit www.macomtech.com for additional data sheets and product information.
- MA-COM Technol gy Solutions no and its difiliates reserve the right to make changes in the products) or information contained herein without notice.

10

M/A-COM Products Released - Rev. 07.07

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test dota may be valiable. Commitment to produce in volume is not guaranteed.

11

• North America Tel: 800.366.2266 / Fax: 978.366.2266

- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.

MA-COM Technol gy Solutions no and its difiliates reserve the right to make ching is to the products) or information contained herein without notice.