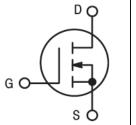


M/A-COM Products

Released - Rev. 07.07


The RF MOSFET Line 80W, 175MHz, 28V

Designed for broadband commercial and military applications up to 200 MHz frequency range. The high–power, high–gain and broadband performance of this device make possible solid state transmitters for FM broadcast or TV channel frequency bands.

N-Channel enhancement mode MOSFET

- Guaranteed performance at 150 MHz, 28 V: Output power = 80 W Gain = 11 dB (13 dB typ.) Efficiency = 55% min. (60% typ.)
- Low thermal resistance
- Ruggedness tested at rated output power
- Nitride passivated die for enhanced reliability
- Low noise figure 1.5 dB typ at 2.0 A, 150 MHz
- Excellent thermal stability; suited for Class A operation

MAXIMUM RATINGS

Product Image

Rating	Symbol	Value	Unit
Drain–Source Voltage	VDSS	65	Vdc
Drain–Gate Voltage	V _{DGO}	65	Vdc
Gate-Source Voltage	V _{GS}	±40	Vdc
Drain Current — Continuous	ID	9.0	Adc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	220 1.26	Watts W/∘C
Storage Temperature Range	T _{stg}	-65 to +150	°C
Operating Temperature Range	TJ	200	°C

THERMAL CHARACTERISTICS

1

Characteristic	Symbol 3 1	Мах	Unit				
Thermal Resistance, Junction to Case	R _{eJC}	0.8	°C/W				

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	·	•		•	•
Drain–Source Breakdown Voltage (V_{DS} = 0 V, V_{GS} = 0 V) I _D = 50 mA	V(BR)DSS	65	_	_	V
Zero Gate Voltage Drain Current (V _{DS} = 28 V, V _{GS} = 0 V)	IDSS	—		2.0	mA
Gate–Source Leakage Current (V_{GS} = 40 V, V_{DS} = 0 V)	I _{GSS}	_	_	1.0	μΑ
ON CHARACTERISTICS					
Gate Threshold Voltage (V_{DS} = 10 V, I_D = 50 mA)	V _{GS(th)}	1.0	3.0	6.0	V
Drain-Source On-Voltage (V _{DS(on)} , V _{GS} = 10 V, I _D = 3.0 A)	V _{DS(on)}	—	—	1.4	V
Forward Transconductance (V_{DS} = 10 V, I_{D} = 2.0 A)	9 _{fs}	1.8	2.2	_	mhos
					(continue

(continued)

NOTE — <u>CAUTION</u> — MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

- ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology
- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.

Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples modor test data may be available. Commitment to produce in volume is not guaranteed.

MA-COM Technology Solutions for and its iffiliates reserve the right to make Cheng is to the products) our formation contained herein without notice.

M/A-COM Products Released - Rev. 07.07

ELECTRICAL CHARACTERISTICS — continued (T_C = 25°C unless otherwise noted)

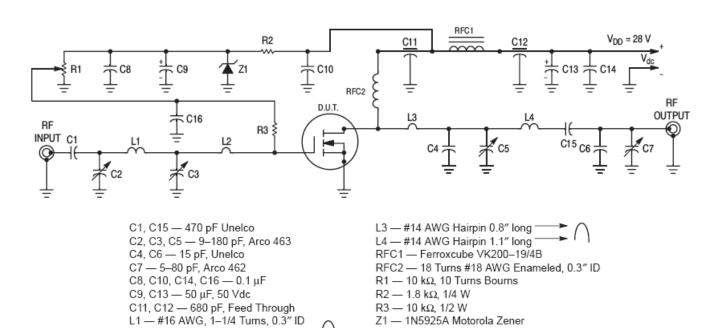
Characteristic	Symbol 3 1	Min	Тур	Max	Unit
DYNAMIC CHARACTERISTICS		•	•	•	•
Input Capacitance (V_{DS} = 28 V, V_{GS} = 0 V, f = 1.0 MHz)	Ciss	_	110	_	pF
Output Capacitance (V_{DS} = 28 V, V_{GS} = 0 V, f = 1.0 MHz)	Coss	_	105	_	pF
Reverse Transfer Capacitance (V_{DS} = 28 V, V_{GS} = 0 V, f = 1.0 MHz)	Crss	—	10	—	pF
FUNCTIONAL CHARACTERISTICS	·		•		
Noise Figure (V_{DD} = 28 V, f = 150 MHz, I_{DQ} = 50 mA)	NF	_	1.5	—	dB
Common Source Power Gain (V _{DD} = 28 V, P _{out} = 80 W, f = 150 MHz, I _{DQ} = 50 mA)	G _{ps}	11	13	_	dB
Drain Efficiency (V _{DD} = 28 V, P _{out} = 80 W, f = 150 MHz, I_{DQ} = 50 mA)	η	55	60	_	%
Electrical Ruggedness (V _{DD} = 28 V, P _{out} = 80 W, f = 150 MHz, I _{DQ} = 50 mA) Load VSWR 30:1 at all phase angles	Ψ	No Degradation in Output Power			
Series Equivalent Input Impedance (V _{DD} = 28 V, P _{out} = 80 W, f = 150 MHz, I _{DQ} = 50 mA)	Z _{in}	—	2.99–j4.5	-	Ohms
Series Equivalent Output Impedance (V _{DD} = 28 V, P _{out} = 80 W, f = 150 MHz, I _{DQ} = 50 mA)	Zout	_	2.68–j1.3	-	Ohms

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be valiable. Commitment to produce in volume is not guaranteed.

2

- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
- Visit www.macomtech.com for additional data sheets and product information.

MA-COM Technology Solution Since and its diffiliates reserve the right to make Changes to the product sy opiniormation contained herein without notice.


[•] North America Tel: 800.366.2266 / Fax: 978.366.2266

Technology Solutions

M/A-COM Products

Released - Rev. 07.07

The RF MOSFET Line 80W, 175MHz, 28V

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test dote may be vailable. Commitment to produce in volume is not guaranteed.

3

L2 — #16 AWG Hairpin 1" long

• North America Tel: 800.366.2266 / Fax: 978.366.2266

- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.

MA-COM Technol gy Solutions no and its iffiliates reserve the right to make on nois to the products) of information on aired herein without notice.

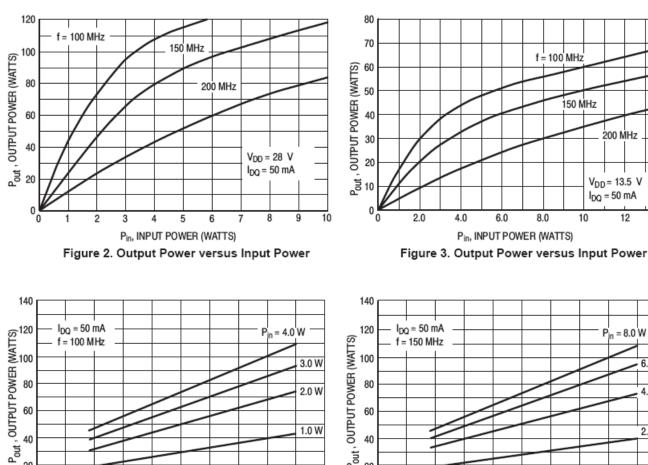
The RF MOSFET Line 80W, 175MHz, 28V

M/A-COM Products Released - Rev. 07.07

f = 100 MHz

150 MHz

10

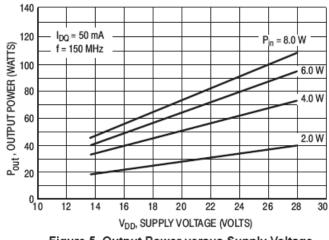

200 MHz

V_{DD} = 13.5 V

12

14

I_{DQ} = 50 mA


2.0 W

1.0 W

30

28

TYPICAL CHARACTERISTICS

6.0

8.0

Figure 5. Output Power versus Supply Voltage

4

20

0 10

12

14

16

18

20

Figure 4. Output Power versus Supply Voltage

VDD, SUPPLY VOLTAGE (VOLTS)

22

24

26

- ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples Commitment to produce in volume is not guaranteed. ailable. be
- North America Tel: 800.366.2266 / Fax: 978.366.2266
 - Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
 - Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298 Visit www.macomtech.com for additional data sheets and product information.

M/A-COM Technology Solutions incrand its affiliates reserve the right to make changes it the products) of information contained herein without notice. changes to the proc

The RF MOSFET Line 80W, 175MHz, 28V

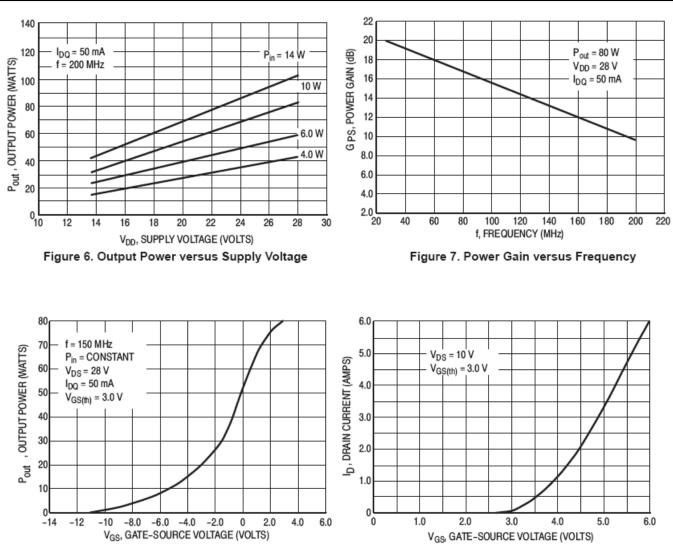
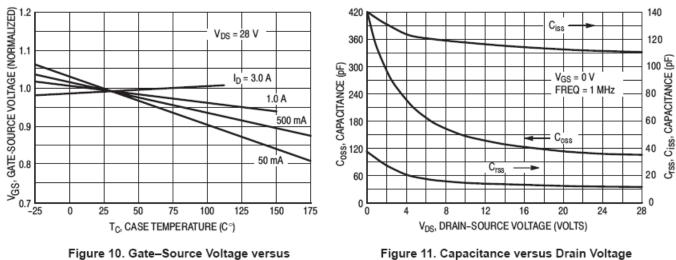


Figure 8. Output Power versus Gate Voltage

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test tests may be realable. Commitment to produce in volume is not guaranteed.

5

• North America Tel: 800.366.2266 / Fax: 978.366.2266


- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.
- Visit www.macomtech.com for additional data sheets and product information

MA-COM Technol gy Solutions for and its difiliates reserve the right to make changes to the proclears) of information contained herein without notice.

The RF MOSFET Line 80W, 175MHz, 28V

M/A-COM Products Released - Rev. 07.07

Case Temperature

Figure 11. Capacitance versus Drain Voltage

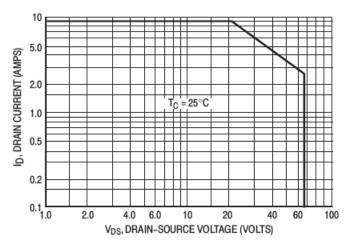


Figure 12. DC Safe Operating Area

6

The RF MOSFET Line 80W, 175MHz, 28V

M/A-COM Products

Released - Rev. 07.07

_	Table 1. Common Source S–Parameters (V_{DS} = 12.5 V, I_D = 4 A)									
f	s	S ₁₁ S ₂₁			S.	12	S	\$ ₂₂		
MHz	S ₁₁	∠¢	S ₂₁	$\angle \phi$	S ₁₂	$\angle \phi$	S ₂₂	$\angle \phi$		
30	0.879	-170	8.09	92	0.014	23	0.839	-174		
40	0.883	-173	6.19	87	0.016	24	0.839	-179		
50	0.885	-174	4.94	84	0.016	28	0.853	-178		
60	0.885	-175	4.21	81	0.017	30	0.845	180		
70	0.888	-176	3.57	77	0.017	34	0.849	179		
80	0.888	-177	3.06	77	0.017	37	0.852	-179		
90	0.888	-178	2.71	76	0.018	42	0.842	-179		
100	0.890	-178	2.45	72	0.019	43	0.858	180		
110	0.888	-179	2.28	70	0.020	46	0.859	179		
120	0.892	-179	2.02	69	0.021	50	0.872	-180		
130	0.893	-179	1.84	67	0.022	52	0.870	-179		
140	0.894	-180	1.73	66	0.023	55	0.880	-180		
150	0.896	-180	1.58	64	0.024	55	0.887	180		
160	0.896	180	1.51	61	0.026	56	0.863	180		
170	0.898	179	1.38	60	0.026	60	0.850	179		
180	0.899	179	1.28	58	0.028	60	0.871	179		
190	0.899	179	1.25	57	0.030	62	0.890	178		
200	0.902	179	1.15	55	0.030	63	0.884	178		
210	0.902	179	1.12	53	0.032	63	0.899	178		
220	0.904	178	1.08	51	0.034	65	0.893	178		
230	0.907	178	0.97	49	0.037	65	0.941	176		
240	0.907	178	0.95	48	0.037	65	0.884	176		
250	0.909	178	0.90	49	0.039	67	0.896	177		
260	0.911	177	0.85	48	0.039	68	0.888	176		
270	0.909	177	0.83	46	0.042	68	0.895	176		
280	0.913	177	0.78	45	0.044	69	0.893	175		
290	0.914	177	0.74	42	0.044	69	0.882	174		
300	0.915	176	0.74	42	0.047	72	0.877	175		
310	0.917	176	0.70	41	0.048	73	0.909	176		
320	0.916	176	0.69	39	0.052	71	0.912	175		
330	0.917	176	0.65	37	0.055	71	0.885	173		
340	0.919	176	0.65	38	0.055	70	0.898	173		
350	0.919	175	0.62	36	0.057	72	0.887	174		
360	0.920	175	0.60	37	0.059	72	0.918	172		
370	0.921	175	0.57	35	0.061	71	0.929	172		
380	0.923	175	0.56	34	0.063	71	0.900	172		
390	0.925	175	0.54	36	0.065	71	0.907	171		
400	0.926	174	0.51	34	0.067	75	0.902	173		
410	0.927	174	0.51	33	0.070	73	0.942	170		
420	0.929	174	0.49	31	0.071	71	0.926	169		
430	0.929	173	0.46	32	0.072	72	0.901	170		
440	0.930	173	0.45	32	0.076	73	0.904	170		

vailable.

may be

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are

Commitment to produce in volume is not guaranteed.

• North America Tel: 800.366.2266 / Fax: 978.366.2266

• Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.

MA-COM Technology Solution Since and its diffiliates reserve the right to make Changes to the product sy opiniormation contained herein without notice.

M/A-COM Products Released - Rev. 07.07

f	5	11	\$ ₂₁		\$ ₁₂		\$ ₂₂		
MHz	S ₁₁	$\angle \phi$	\$ ₂₁	$\angle \phi$	\$ ₁₂	$\angle \phi$	S ₂₂	$\angle \phi$	
450	0.932	173	0.45	29	0.079	75	0.924	170	
460	0.932	172	0.44	30	0.082	71	0.938	167	
470	0.933	172	0.42	30	0.081	73	0.908	168	
480	0.931	172	0.42	29	0.086	72	0.933	168	
490	0.931	171	0.41	28	0.089	72	0.926	167	
500	0.931	171	0.41	27	0.092	71	0.936	167	

Table 1. Common Source S-Parameters (V_{DS} = 12.5 V, I_D = 4 A) (continued)

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are Commitment to produce in volume is not guaranteed. vailable. MA-COM Technol gy Solutions included in a stillilates reserve the right to make changes in the products) opiniormation contained herein without notice. y be

• North America Tel: 800.366.2266 / Fax: 978.366.2266

- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298 ٠ Visit www.macomtech.com for additional data sheets and product information.

8

The RF MOSFET Line 80W, 175MHz, 28V

M/A-COM Products Released - Rev. 07.07

		Table 2. Co	mmon Sourc	e S-Paramet	ers (V _{DS} = 28	V, I _D = 4 A)		
f	S	11	S	21	S	12	S	22
MHz	S ₁₁	∠¢	S ₂₁	∠¢	S ₁₂	∠¢	S ₂₂	$\angle \phi$
30	0.840	-163	11.48	92	0.016	20	0.718	-169
40	0.849	-167	8.80	86	0.017	22	0.713	-174
50	0.853	-170	6.99	82	0.017	24	0.748	-174
60	0.854	-171	5.92	79	0.017	23	0.746	-175
70	0.859	-172	5.00	74	0.018	25	0.746	-175
80	0.859	-174	4.29	73	0.018	30	0.741	-174
90	0.861	-174	3.77	71	0.019	38	0.735	-174
100	0.866	-175	3.39	67	0.018	40	0.768	-176
110	0.865	-175	3.12	64	0.018	41	0.782	-177
120	0.871	-176	2.75	63	0.019	42	0.794	-175
130	0.875	-176	2.49	60	0.021	45	0.783	-172
140	0.877	-177	2.31	59	0.023	51	0.776	-175
150	0.883	-177	2.10	56	0.023	55	0.806	-176
160	0.884	-177	1.99	53	0.023	58	0.807	-176
170	0.886	-178	1.82	51	0.023	61	0.806	-176
180	0.890	-178	1.66	49	0.025	59	0.820	-175
190	0.891	-179	1.62	48	0.027	60	0.815	-176
200	0.896	-179	1.47	46	0.030	63	0.819	-177
210	0.898	-179	1.41	43	0.031	67	0.842	-178
220	0.901	-179	1.36	41	0.032	70	0.855	-178
230	0.905	-180	1.22	38	0.033	70	0.906	-178
240	0.906	-180	1.19	38	0.034	67	0.845	-178
250	0.909	180	1.11	39	0.037	68	0.831	-178
260	0.913	180	1.03	37	0.038	70	0.837	-180
270	0.912	179	0.10	35	0.041	72	0.859	179
280	0.916	179	0.93	34	0.042	74	0.876	178
290	0.918	179	0.88	31	0.041	73	0.865	179
300	0.919	178	0.87	31	0.044	74	0.837	-180
310	0.922	178	0.83	31	0.046	74	0.863	180
320	0.922	178	0.80	27	0.051	73	0.879	177
330	0.924	177	0.75	26	0.054	74	0.878	176
340	0.926	177	0.74	27	0.053	74	0.897	177
350	0.926	177	0.71	24	0.054	77	0.879	179

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.

• North America Tel: 800.366.2266 / Fax: 978.366.2266

• Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.

PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples apolo test data may be vailable. Commitment to produce in volume is not guaranteed.

MA-COM Technol gy Solutions no and its difiliates reserve the right to make changes in the products) or information contained herein without notice.

M/A-COM Products Released - Rev. 07.07

f	S.	\$ ₁₁		21	S	12	S	22		
MHz	S ₁₁	$\angle \phi$	S ₂₁	$\angle \phi$	\$ ₁₂	$\angle \phi$	S ₂₂	$\angle \phi$		
360	0.927	177	0.68	26	0.056	75	0.888	177		
370	0.929	177	0.64	24	0.058	73	0.893	175		
380	0.931	176	0.62	23	0.062	72	0.885	174		
390	0.934	176	0.60	25	0.064	74	0.903	174		
400	0.934	176	0.57	22	0.065	78	0.898	177		
410	0.936	175	0.56	21	0.068	77	0.931	175		
420	0.938	175	0.53	20	0.070	74	0.906	173		
430	0.938	174	0.51	21	0.072	73	0.885	173		
440	0.939	174	0.49	21	0.075	75	0.895	172		
450	0.941	174	0.48	19	0.080	78	0.923	172		
460	0.941	173	0.47	19	0.082	75	0.940	171		
470	0.942	173	0.45	18	0.080	75	0.904	172		
480	0.940	173	0.44	18	0.083	74	0.910	171		
490	0.940	172	0.43	18	0.088	72	0.906	169		
500	0.940	172	0.42	17	0.092	72	0.927	168		

Table 2. Common Source S–Parameters (V_{DS} = 28 V, I_D = 4 A) (continued)

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test date may be vailable. Commitment to produce in volume is not guaranteed.

10

• North America Tel: 800.366.2266 / Fax: 978.366.2266

- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.

MA-COM Technol gy Solutions included in a stillilates reserve the right to make changes in the products) opiniormation contained herein without notice.

DESIGN CONSIDERATIONS

The MRF173 is a RF MOSFET power N-channel enhancement mode field-effect transistor (FET) designed for VHF power amplifier applications. M/A-COM RF MOSFETs feature a vertical structure with a planar design, thus avoiding the processing difficulties associated with V-groove power FETs.

M/A-COM Application Note AN211A, FETs in Theory and Practice, is suggested reading for those not familiar with the construction and characteristics of FETs.

The major advantages of RF power FETs include high gain, low noise, simple bias systems, relative immunity from thermal runaway, and the ability to withstand severely mismatched loads without suffering damage. Power output can be varied over a wide range with a low power dc control signal, thus facilitating manual gain control, ALC and modulation.

DC BIAS

The MRF173 is an enhancement mode FET and, therefore, does not conduct when drain voltage is applied. Drain current flows when a positive voltage is applied to the gate. See Figure 9 for a typical plot of drain current versus gate voltage. RF power FETs require forward bias for optimum performance. The value of quiescent drain current (IDQ) is not critical for many applications. The MRF173 was characterized at IDQ = 50 mA, which is the suggested minimum

M/A-COM Products Released - Rev. 07.07

value of IDQ. For special applications such as linear amplification, IDQ may have to be selected to optimize the critical parameters.

The gate is a dc open circuit and draws no current. Therefore, the gate bias circuit may generally be just a simple resistive divider network. Some special applications may require a more elaborate bias system.

GAIN CONTROL

Power output of the MRF173 may be controlled from its rated value down to zero (negative gain) by varying the dc gate voltage. This feature facilitates the design of manual gain control, AGC/ALC and modulation systems. (see Figure 8.)

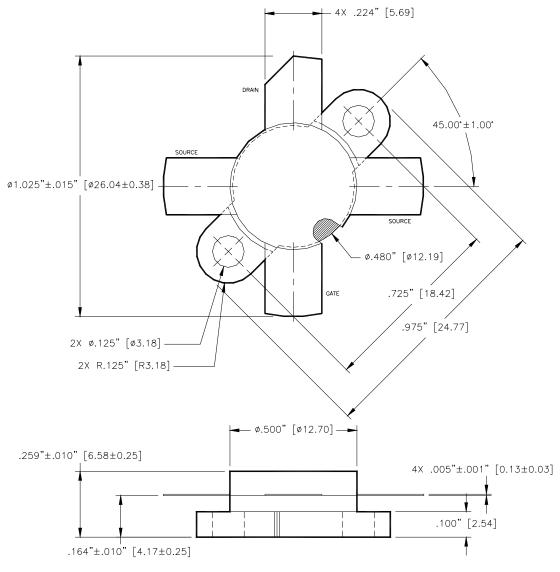
AMPLIFIER DESIGN

Impedance matching networks similar to those used with bipolar VHF transistors are suitable for MRF173. See M/A-COM Application Note AN721', Impedance Matching Networks Applied to RF Power Transistors. The higher input impedance of RF MOSFETs helps ease the task of broadband network design. Both small–signal scattering parameters and large–signal impedances are provided. While the sparameters will not produce an exact design solution for high power operation, they do yield a good first approximation. This is an additional advantage of RF MOS power FETs.

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. **PRELIMINARY:** Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test dote may be vailable. Commitment to produce in volume is not **guaranteed**.

- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.

MA-COM Technology Solutions and and its iffiliates reserve the right to make Changes for the products) built ormation contained herein without notice.


[•] North America Tel: 800.366.2266 / Fax: 978.366.2266

12

M/A-COM Products Released - Rev. 07.07

Unless otherwise noted, tolerances are inches ±.005" [millimeters ±0.13mm]

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. **PRELIMINARY**: Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be realiable. Commitment to produce in volume is not guaranteed.