TRANSFER-MOLD TYPE INSULATED TYPE

PS21562-SP

INTEGRATED POWER FUNCTIONS

600V/5A low-loss 5^{th} generation IGBT inverter bridge for three phase DC-to-AC power conversion. Open emitter type.

INTEGRATED DRIVE, PROTECTION AND SYSTEM CONTROL FUNCTIONS

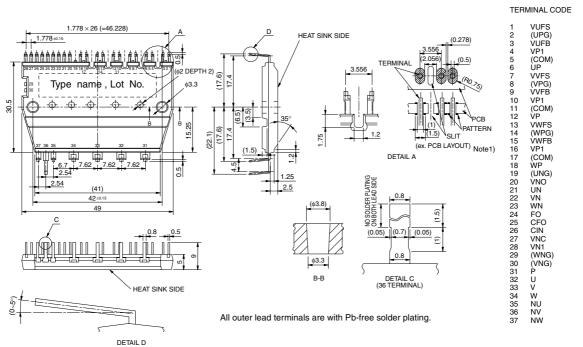
- For upper-leg IGBTs: Drive circuit, High voltage isolated high-speed level shifting, Control supply under-voltage (UV) protection.
- For lower-leg IGBTs: Drive circuit, Control supply under-voltage protection (UV), Short circuit protection (SC).
- Fault signaling: Corresponding to an SC fault (Lower-leg IGBT) or a UV fault (Lower-side supply).
- Input interface: 3,5V line CMOS/TTL compatible. (High Active)
- UL Approved : Yellow Card No. E80276

APPLICATION

AC100V~200V inverter drive for small power motor control

Fig. V PACKAGE COT LINES

Dimensions in mm


TERMINAL CODE

1.778 × 26 (=46.228)

HEAT SINK SIDE

0.278)

3 VUFB

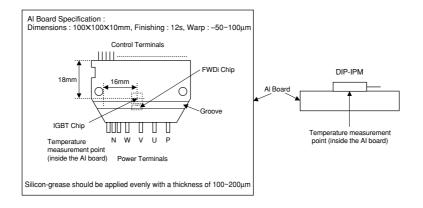
Note 1: In order to get enough creepage distance between the terminals, please take some countermeasure such as a slit on PCB.

TRANSFER-MOLD TYPE INSULATED TYPE

MAXIMUM RATINGS (Tj = 25°C, unless otherwise noted)

INVERTER PART

Symbol	Parameter	Condition	Ratings	Unit
Vcc	Supply voltage	Applied between P-NU, NV, NW	450	V
VCC(surge)	Supply voltage (surge)	Applied between P-NU, NV, NW	500	V
VCES	Collector-emitter voltage		600	V
±lc	Each IGBT collector current	Tf = 25°C	5	Α
±ICP	Each IGBT collector current (peak)	Tf = 25°C, less than 1ms	10	Α
Pc	Collector dissipation	Tf = 25°C, per 1 chip	16.7	W
Tj	Junction temperature	(Note 1)	-20~+125	°C


Note 1 : The maximum junction temperature rating of the power chips integrated within the DIP-IPM is 150° C (@ Tf $\leq 100^{\circ}$ C) however, to ensure safe operation of the DIP-IPM, the average junction temperature should be limited to Tj(ave) $\leq 125^{\circ}$ C (@ Tf $\leq 100^{\circ}$ C).

CONTROL (PROTECTION) PART

Symbol	Parameter	Condition	Ratings	Unit
VD	Control supply voltage	Applied between VP1-VNC, VN1-VNC	20	V
VDB	Control supply voltage	Applied between VuFB-VuFs, VvFB-VvFs, VwFB-VwFs	20	V
VIN	Input voltage	Applied between UP, VP, WP, UN, VN, WN-VNC	-0.5~VD+0.5	V
VFO	Fault output supply voltage	Applied between Fo-VNC	-0.5~VD+0.5	V
IFO	Fault output current	Sink current at Fo terminal	1	mA
Vsc	Current sensing input voltage	Applied between CIN-VNC	-0.5~VD+0.5	V

70 4., 5 Syr. b	TEM BOTTO	COM/Soldition T	SUB S	Unit
VCC(PROT)	Self protection supply voltage limit (short circuit protection capability)	$VD = 13.5 \sim 16.5 V$, Inverter part $T_j = 125 °C$, non-repetitive, less than 2 μs	400	٧
Tf	Module case operation temperature	(Note 2)	− 20~+100	°C
Tstg	Storage temperature		− 40~+125	°C
Viso	Isolation voltage	60Hz, Sinusoidal, 1 minute, All connected pins to heat-sink plate	2500	Vrms

Note 2: Tr measurement point

TRANSFER-MOLD TYPE INSULATED TYPE

THERMAL RESISTANCE

Symbol Par	Davamatav	meter Condition	Limits		Limits			Limit
	Parameter		Min.	Тур.	Max.	Unit		
Rth(j-f)Q	Junction to case thermal	Inverter IGBT part (per 1/6 module)	_	_	6.0	°C/W		
Rth(j-f)F	resistance (Note 3)	Inverter FWD part (per 1/6 module)	_	_	6.5	°C/W		

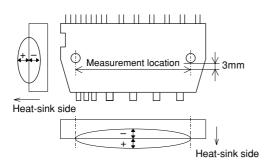
Note 3: Grease with good thermal conductivity should be applied evenly with about +100μm~+200μm on the contacting surface of DIP-IPM and heat-sink.

ELECTRICAL CHARACTERISTICS ($T_j = 25^{\circ}C$, unless otherwise noted) **INVERTER PART**

Cymbol		_	Condition		Limits		
Symbol	Parameter		Condition		Тур.	Max.	Unit
VCE(cot)	Collector-emitter saturation VD = VDB = 15V IC = 5A, Tj = 25°C		IC = 5A, Tj = 25°C	_	1.60	2.10	\/
VCE(sat) voltage	VIN = 5V	Ic = 5A, Tj = 125°C	_	1.70	2.20	V	
VEC	FWD forward voltage	$T_j = 25^{\circ}C, -IC = 5A, VIN = 0V$		_	1.50	2.00	V
ton		Vcc = 300V, VD = VDB = 15V		0.60	1.20	1.80	μs
trr				_	0.30	_	μs
tc(on)	Switching times	IC = 5A, Tj = 125°C, VIN	= 0 ↔ 5V	_	0.40	0.60	μs
toff		Inductive load (upper-lov	wer arm)	_	1.30	2.00	μs
tc(off)				_	0.50	0.80	μs
ICES	Collector-emitter cut-off	Vor Voro	Tj = 25°C	_	_	1	mA
	current	VCE = VCES $T_j = 125$ °C	Tj = 125°C	_	_	10	IIIA

CONTRO	(PROTECTION) PART			/ N / I T					
Symon	Para mater	U.C	, ₍₁₎	nc iti pn		⊑π its Τ _γ ρ.	Nav	l nit	
		VD = VDB = 15V	Total o	of VP1-VNC, VN1-VNC	_	_	5.00		
l _{ID}	Circuit current	VIN = 5V	Vufb-\	VUFS, VVFB-VVFS, VWFB-VWFS	_	_	0.40	mA	
טו	Circuit current	VD = VDB = 15V	Total o	f VP1-VNC, VN1-VNC	_	_	7.00	1117	
	V		VUFB-\	JUFS, VVFB-VVFS, VWFB-VWFS	_	_	0.55	'	
VFOH	Fault output voltage	Vsc = 0V, Fo circuit pull-up to 5V with $10k\Omega$		4.9	_	_	V		
VFOL	i auti output voitage	VSC = 1V, IFO = 1m	VSC = 1V, IFO = 1mA		_	_	0.95	V	
VSC(ref)	Short circuit trip level	Tf = -20~100°C, V	D = 15V	(Note 4)	0.45	_	0.52	V	
lin	Input current	VIN = 5V			1.0	1.5	2.0	mA	
UVDBt				Trip level	10.0	_	12.0	V	
UVDBr	Control supply under-voltage	T _i ≤ 125°C		Reset level	10.5	_	12.5	V	
UVDt	protection	1j≤ 125 C		Trip level	10.3	_	12.5	V	
UVDr				Reset level	10.8	_	13.0	V	
tFO	Fault output pulse width	CFO = 22nF (Note 5)		1.0	1.8	_	ms		
Vth(on)	ON threshold voltage	Applied between UP, VP, WP-Vnc, Un, Vn, Wn-Vnc		2.1	2.3	2.6	V		
Vth(off)	OFF threshold voltage	Applied perweell 0	P, VP, V	VP-VING, OIN, VIN, VVIN-VING	0.8	1.4	2.1	V	

Note 4: Short circuit protection is functioning only for the lower-arms. Please select the external shunt resistance such that the SC trip-level is less than 2.0 times of the current rating.


^{5:} Fault signal is asserted corresponding to a short circuit or lower side control supply under-voltage failure. The fault output pulse width tFO depends on the capacitance value of CFO according to the following approximate equation: CFO = 12.2 X 10⁻⁶ X tFO [F].

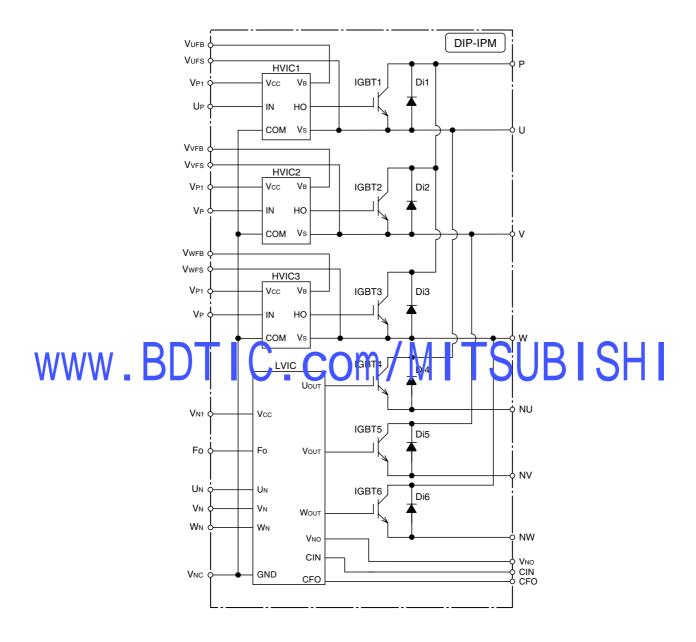
TRANSFER-MOLD TYPE **INSULATED TYPE**

MECHANICAL CHARACTERISTICS AND RATINGS

Dozomstor	Condition		Limits			Llmit	
Parameter	Col	Condition Min. Typ. Ma			Max.	Unit	
Mounting torque	Mounting screw : M3 Recommended : 0.78 N·m		0.59	_	0.98	N·m	
Weight			_	20	_	g	
Heat-sink flatness	(Note 6)		-50	_	100	μm	

Note 6: Measurement point of heat-sink flatness

PECOMMI	ENDED OPERATION CON	OIT ONS	/ N / I T	QH	RI	CI	
Symbol	- arameter	Condition	101 1 1	F ecr Min.	m mer dec Typ.	val te Max.	Unit
Vcc	Supply voltage	Applied between P-NU, NV, NW		0	300	400	V
VD	Control supply voltage	Applied between VP1-VNC, VN1-VN	С	13.5	15.0	16.5	V
VDB	Control supply voltage	Applied between VUFB-VUFS, VVFB-	-Vvfs, Vwfb-Vwfs	13.0	15.0	18.5	V
ΔV D, ΔV DB	Control supply variation			-1	_	1	V/μs
tdead	Arm shoot-through blocking time	For each input signal, T _f ≤ 100°C		1.5	_	_	μs
fPWM	PWM input frequency	Tf ≤ 100°C, Tj ≤ 125°C			_	20	kHz
lo	Allewahle was a suggest	VCC = 300V, VD = VDB = 15V,	fPWM = 5kHz	_	_	3.5	Arms
10	Allowable r.m.s. current	P.F = 0.8, sinusoidal output $T_f \le 100^{\circ}C$, $T_j \le 125^{\circ}C$ (Note 7)	fPWM = 15kHz	_	_	3.2	AIIIIS
PWIN(on)			(Note 8)	0.3	_	_	
	A II	200 ≤ VCC ≤ 350V, 13.5 ≤ VD ≤ 16.5V,	Below rated current	0.5	_	_	
PWIN(off)	Allowable minimum input pulse width	$13.0 \le VDB \le 18.5V$, $-20^{\circ}C \le Tf \le 100^{\circ}C$,	Between rated current and 1.7 times of rated current	0.5	_	_	μs
		N-line wiring inductance less than 10nH (Note 9)	Between 1.7 times and 2.0 times of rated current	0.5	_	_	
Vnc	V _{NC} variation	between VNC-NU, NV, NW (including	ng surge)	-5.0	_	5.0	V

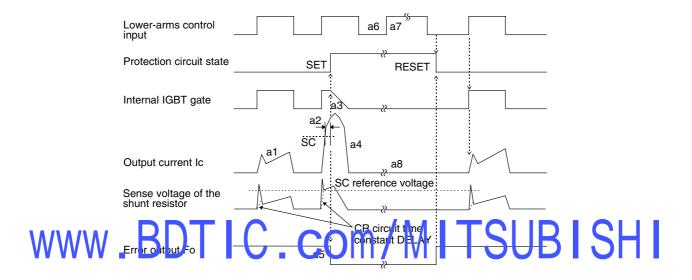

Note 7: The allowable r.m.s. current value depends on the actual application conditions.

8: The input pulse width less than PWIN(on) might make no response.

9: IPM might not work properly or make response for the input signal with OFF pulse width less than PWIN(off). Please refer to Fig.5.

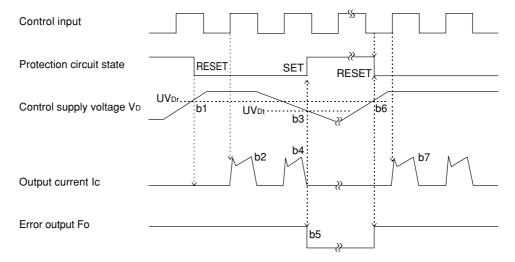
TRANSFER-MOLD TYPE INSULATED TYPE

Fig. 2 THE DIP-IPM INTERNAL CIRCUIT



TRANSFER-MOLD TYPE INSULATED TYPE

Fig. 3 TIMING CHART OF THE DIP-IPM PROTECTIVE FUNCTIONS


[A] Short-Circuit Protection (Lower-arms only with the external shunt resistor and CR filter)

- a1. Normal operation: IGBT ON and carrying current.
- a2. Short circuit current detection (SC trigger).
- a3. IGBT gate hard interruption.
- a4. IGBT turns OFF.
- a5. Fo timer operation starts: The pulse width of the Fo signal is set by the external capacitor CFo.
- a6. Input "L": IGBT OFF.
- a7. Input "H": IGBT ON.
- a8. IGBT OFF in spite of input "H".

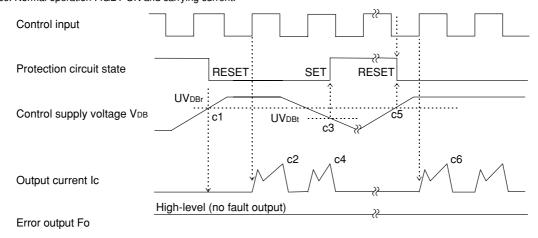
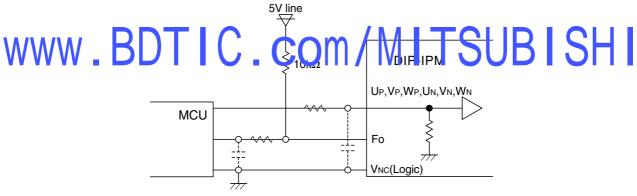
[B] Under-Voltage Protection (Lower-arm, UVD)

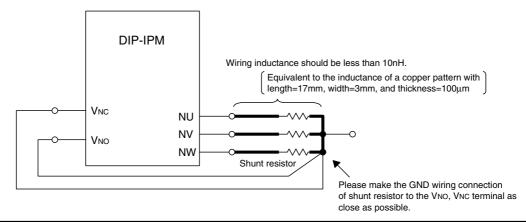
- b1. Control supply voltage rises: After the voltage level reaches UVDr, the circuits start to operate when next input is applied.
- b2. Normal operation: IGBT ON and carrying current.
- b3. Under voltage trip (UVDt).
- b4. IGBT OFF in spite of control input condition.
- b5. Fo operation starts.
- b6. Under voltage reset (UVDr).
- b7. Normal operation: IGBT ON and carrying current.

TRANSFER-MOLD TYPE **INSULATED TYPE**

[C] Under-Voltage Protection (Upper-arm, UVDB)

- c1. Control supply voltage rises: After the voltage reaches UVDBr, the circuits start to operate when next input is applied. c2. Normal operation: IGBT ON and carrying current.
- c3. Under voltage trip (UVDBt).
- c4. IGBT OFF in spite of control input condition, but there is no Fo signal output.
- c5. Under voltage reset (UVDBr).
- c6. Normal operation: IGBT ON and carrying current.

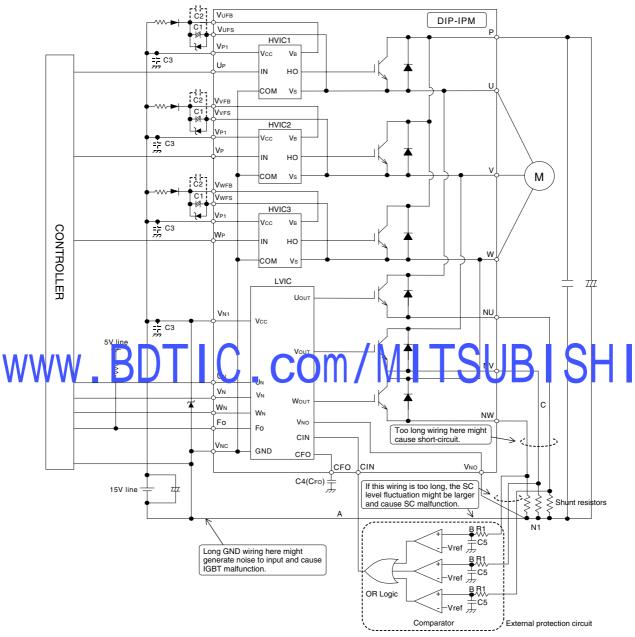




Fig. 4 RECOMMENDED CPU I/O INTERFACE CIRCUIT

Note: The setting of RC coupling at each input (parts shown dotted) depends on the PWM control scheme and the wiring impedance of the printed circuit board.

The DIP-IPM input section integrates a $2.5k\Omega$ (min) pull-down resistor. Therefore, when using an external filtering resistor, pay attention to the turn-on threshold voltage.

Fig. 5 WIRING CONNECTION OF SHUNT RESISTOR



TRANSFER-MOLD TYPE INSULATED TYPE

Fig. 6 TYPICAL DIP-IPM APPLICATION CIRCUIT EXAMPLE

C1:Tight tolerance temp-compensated electrolytic type C2,C3: 0.22~2µF R-category ceramic capacitor for noise filtering

- Note 1: To prevent the input signals oscillation, the wiring of each input should be as short as possible. (Less than 2cm)
 - 2: By virtue of integrating an application specific type HVIC inside the module, direct coupling to MCU terminals without any opto-coupler or transformer isolation is possible.
 - 3: Fo output is open drain type. This signal line should be pulled up to the positive side of the 5V power supply with approximately $10k\Omega$ resistor.
 - 4: Fo output pulse width is determined by the external capacitor between CFO and VNc terminals (CFO). (Example: CFO = 22 nF → tFO = 1.8 ms (typ.)) 5: The logic of input signal is high-active. The DIP-IPM input signal section integrates a 2.5kΩ (min) pull-down resistor. Therefore, when
 - 5: The logic of input signal is high-active. The DIP-IPM input signal section integrates a 2.5kΩ (min) pull-down resistor. Therefore, when using external filtering resistor, care must be taken to satisfy the turn-on threshold voltage requirement.
 - **6:** To prevent malfunction of protection, the wiring of A, B, C should be as short as possible.
 - 7: Please set the C5R1 time constant in the range 1.5~2µs.
 - 8: Each capacitor should be located as nearby the pins of the DIP-IPM as possible.
 - 9: To prevent surge destruction, the wiring between the smoothing capacitor and the P, N1 pins should be as short as possible. Approximately a 0.1~0.22μF snubber capacitor between the P-N1 pins is recommended.
 - 10: To prevent ICs from surge destruction, it is recommended to insert a Zener diode (24V, 1W) between each control supply terminals.
 - 11: The reference voltage Viref of comparator should be set up the same rating of short circuit trip level (Vsc(ref): min.0.45V to max.0.52V).
 - 12: OR logic output level should be set up the same rating of short circuit trip level (Vsc(ref): min.0.45V to max.0.52V).

