## MC100EP196

### 3.3V ECL Programmable Delay Chip with FTUNE

The MC100EP196 is a programmable delay chip (PDC) designed primarily for clock deskewing and timing adjustment. It provides variable delay of a differential NECL/PECL input transition. It has similar architecture to the EP195 with the added feature of further tuneability in delay using the FTUNE pin. The FTUNE input takes an analog voltage from $\mathrm{V}_{\mathrm{CC}}$ to $\mathrm{V}_{\mathrm{EE}}$ to fine tune the output delay from 0 to 60 ps .

The delay section consists of a programmable matrix of gates and multiplexers as shown in the logic diagram, Figure 2. The delay increment of the EP196 has a digitally selectable resolution of about 10 ps and a net range of up to 10.2 ns . The required delay is selected by the 10 data select inputs $\mathrm{D}[9: 0]$ values and controlled by the LEN (pin 10). A LOW level on LEN allows a transparent LOAD mode of real time delay values by D[9:0]. A LOW to HIGH transition on LEN will LOCK and HOLD current values present against any subsequent changes in $\mathrm{D}[10: 0]$. The approximate delay values for varying tap numbers correlating to D0 (LSB) through D9 (MSB) are shown in Table 5.

Because the EP196 is designed using a chain of multiplexers, it has a fixed minimum delay of 2.4 ns . An additional pin, D10, is provided for controlling Pins 14 and 15, CASCADE and $\overline{\text { CASCADE, also }}$ latched by LEN, in cascading multiple PDCs for increased programmable range. The cascade logic allows full control of multiple PDCs. Switching de rio s fron 11 " 1 " sta tes / D 09 wi i SE MAX
 the delay equivalent to " DO ", the minimum increment.

Select input pins, $\mathrm{D}[10: 0]$, may be threshold controlled by combinations of interconnects between $\mathrm{V}_{\mathrm{EF}}$ (pin 7) and $\mathrm{V}_{\mathrm{CF}}(\operatorname{pin} 8)$ for LVCMOS, ECL, or LVTTL level signals. LVTTL and LVCMOS operation is available in PECL mode only. For LVCMOS input levels, leave $\mathrm{V}_{\mathrm{CF}}$ and $\mathrm{V}_{\mathrm{EF}}$ open. For ECL operation, short $\mathrm{V}_{\mathrm{CF}}$ and $\mathrm{V}_{\mathrm{EF}}$ (pins 7 and 8). For LVTTL level operation, connect a 1.5 V supply reference to $\mathrm{V}_{\mathrm{CF}}$ and leave open $\mathrm{V}_{\mathrm{EF}}$ pin. The 1.5 V reference voltage to $\mathrm{V}_{\mathrm{CF}}$ pin can be accomplished by placing a $2.2 \mathrm{k} \Omega$ resistor between $\mathrm{V}_{\mathrm{CF}}$ and $\mathrm{V}_{\mathrm{EE}}$ for 3.3 V power supply.

The $V_{\text {BB }}$ pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to $\mathrm{V}_{\mathrm{BB}}$ as a switching reference voltage. $\mathrm{V}_{\mathrm{BB}}$ may also rebias AC coupled inputs. When used, decouple $\mathrm{V}_{\mathrm{BB}}$ and $\mathrm{V}_{\mathrm{CC}}$ via a $0.01 \mu \mathrm{~F}$ capacitor and limit current sourcing or sinking to 0.5 mA . When not used, $\mathrm{V}_{\mathrm{BB}}$ should be left open.

The 100 Series contains temperature compensation.

- Maximum Frequency > 1.2 GHz Typical
- Programmable Range: 0 ns to 10 ns
- Delay Range: 2.4 ns to 12.4 ns
- 10 ps Increments
- PECL Mode Operating Range:
$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V with $\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$
- NECL Mode Operating Range:
$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ with $\mathrm{V}_{\mathrm{EE}}=-3.0 \mathrm{~V}$ to -3.6 V
- Open Input Default State
- Safety Clamp on Inputs
- A Logic High on the EN Pin Will Force Q to Logic Low
- D[10:0] Can Accept Either ECL, LVCMOS, or LVTTL Inputs
- $\mathrm{V}_{\mathrm{BB}}$ Output Reference Voltage
- Pb -Free Packages are Available*


## MC100EP196



Figure 1. 32-Lead LQFP Pinout (Top View)

## uww. BDTI C. com/OA

Table 1. PIN DESCRIPTION

| Pin | Name | I/0 | Default State | Description |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & 23,25,26,27, \\ & 29,30,31,32, \\ & 1,2 \end{aligned}$ | $\mathrm{D}[0: 9]$ | LVCMOS, LVTTL, ECL Input | LOW | Single-ended Parallel Data Inputs [0:9]. Internal $75 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{EE}}$. (Note 1) |
| 3 | D[10] | LVCMOS, LVTTL, ECL Input | LOW | Single-ended CASCADE/CASCADE Control Input. Internal $75 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{EE}}$. (Note 1) |
| 4 | IN | ECL Input | LOW | Noninverted Differential Input. Internal $75 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{EE}}$. |
| 5 | IN | LVPECL, LVDS | HIGH | Inverted Differential Input. Internal $75 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{EE}}$. |
| 6 | $V_{B B}$ | - | - | ECL Reference Voltage Output |
| 7 | $\mathrm{V}_{\mathrm{EF}}$ | - | - | Reference Voltage for ECL Mode Connection |
| 8 | $\mathrm{V}_{\text {CF }}$ | - | - | LVCMOS, ECL, OR LVTTL Input Mode Select |
| 9, 28 | $\mathrm{V}_{\mathrm{EE}}$ | - | - | Negative Supply Voltage. All $\mathrm{V}_{\text {EE }}$ Pins must be Externally Connected to Power Supply to Guarantee Proper Operation. (Note 2) |
| 13, 18, 19, 22 | $\mathrm{V}_{\mathrm{CC}}$ | - | - | Positive Supply Voltage. All $\mathrm{V}_{\mathrm{CC}}$ Pins must be externally Connected to Power Supply to Guarantee Proper Operation. (Note 2) |
| 10 | LEN | ECL Input | LOW | Single-ended D pins LOAD / HOLD input. Internal $75 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{EE}}$. |
| 11 | SETMIN | ECL Input | LOW | Single-ended Minimum Delay Set Logic Input. Internal $75 \mathrm{k} \Omega$ to $V_{\text {EE. }}$ (Note 1) |
| 12 | SETMAX | ECL Input | LOW | Single-ended Maximum Delay Set Logic Input. Internal $75 \mathrm{k} \Omega$ to $V_{E E}$ (Note 1) |
| 14 | CASCADE | ECL Output | - | Inverted Differential Cascade Output for D[10] Input. Typically Terminated with $50 \Omega$ to $\mathrm{V}_{\mathrm{TT}}=\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$. |
| 15 | CASCADE | ECL Output | - | Noninverted Differential Cascade Output for D[10] Input. Typically Terminated with $50 \Omega$ to $\mathrm{V}_{\mathrm{TT}}=\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$. |
| 16 | ET | ECL Inp | L W | single-ende Ontt ationferimy te fal 7 ks to $\mathrm{V}_{\mathrm{EE}}$. |
| 17 | -TN | atog In ut | - | inetiving ant. |
| 21 | Q | ECL Output | - | Noninverted Differential Output. Typically Terminated with $50 \Omega$ to $\mathrm{V}_{\mathrm{TT}}=\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$. |
| 20 | $\overline{\mathrm{Q}}$ | ECL Output | - | Inverted Differential Output. Typically Terminated with $50 \Omega$ to $\mathrm{V}_{\mathrm{TT}}=\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$. |

1. SETMIN will override SETMAX if both are high. SETMAX and SETMIN will override all D[0:10] inputs.
2. All $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{EE}}$ pins must be externally connected to Power Supply to guarantee proper operation.

## MC100EP196

Table 2. CONTROL PIN

| Pin | State | Function |
| :---: | :---: | :--- |
| EN | LOW (Note 3) | Input Signal is Propagated to the Output |
|  | HIGH | Output Holds Logic Low State |
|  | LOW (Note 3) | Transparent or LOAD mode for real time delay values present on D[0:10]. |
|  | HIGH | LOCK and HOLD mode for delay values on D[0:10]; further changes on D[0:10] <br> are not recognized and do not affect delay. |
| SETMIN | LOW (Note 3) | Output Delay set by D[0:10] |
|  | HIGH | Set Minimum Output Delay |
| SETMAX | LOW (Note 3) | Output Delay set by D[0:10] |
|  | HIGH | Set Maximum Output Delay |
| D10 | LOW | CASCADE Output LOW, CASCADE Output HIGH |
|  | HIGH | CASCADE Output LOW, CASCADE Output High |

3. Internal pulldown resistor will provide a logic LOW if pin is left unconnected.

Table 3. CONTROL D[0:10] INTERFACE

| Pin | State | Function |
| :---: | :---: | :--- |
| $\mathrm{V}_{\mathrm{CF}}$ | $\mathrm{V}_{\mathrm{EF}}$ Pin (Note 4) | ECL Mode |
| $\mathrm{V}_{\mathrm{CF}}$ | No Connect | LVCMOS Mode |
| $\mathrm{V}_{\mathrm{CF}}$ | $1.5 \mathrm{~V} \pm 100 \mathrm{mV}$ | LVTTL Mode (Note 5) |

4. Short $\mathrm{V}_{\mathrm{CF}}(\operatorname{pin} 8)$ and $\mathrm{V}_{\mathrm{EF}}(\operatorname{pin} 7)$.
5. When Operating in LVTTL Mode, the reference voltage can be provided by connecting an external resistor, $\mathrm{R}_{\mathrm{CF}}$ (suggested resistor value is $2.2 \mathrm{k} \Omega \pm 5 \%$ ), between $\mathrm{V}_{\mathrm{CF}}$ and $\mathrm{V}_{\mathrm{EE}}$ pins.



Figure 2. Logic Diagram

## MC100EP196

Table 5. THEORETICAL DELTA DELAY VALUES

| D(9:0) Value | SETMIN | SETMAX | Programmable Delay* |
| :---: | :---: | :---: | :---: |
| XXXXXXXXX | H | L | 0 ps |
| 0000000000 | L | L | 0 ps |
| 0000000001 | L | L | 10 ps |
| 0000000010 | L | L | 20 ps |
| 000000011 | L | L | 30 ps |
| 0000000100 | L | L | 40 ps |
| 0000000101 | L | L | 50 ps |
| 0000000110 | L | L | 60 ps |
| 0000000111 | L | L | 70 ps |
| 0000001000 | L | L | 80 ps |
| 0000010000 | L | L | 160 ps |
| 0000100000 | L | L | 320 ps |
| 0001000000 | L | L | 640 ps |
| 0010000000 | L | L | 1280 ps |
| 0100000000 | L | L | 2560 ps |
| 1000000000 |  | 5 | 5120 ps |
| 1111111111 | L |  | 10230 ps |
| $X X X X X X X X X$ |  |  |  |

*Fixed minimum delay not included.


## MC100EP196



Table 7. ATTRIBUTES

| Characteristics | Value |  |
| :---: | :---: | :---: |
| Internal Input Pulldown Resistor | $75 \mathrm{k} \Omega$ |  |
| Internal Input Pullup Resistor | N/A |  |
| ESD ProtectionHuman Body Model <br> Machine Model <br> Charged Device Model | $\begin{gathered} >2 \mathrm{kV} \\ >100 \mathrm{~V} \\ >2 \mathrm{kV} \end{gathered}$ |  |
| Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1) | Pb Pkg | Pb-Free Pkg |
| LQFP-32 | Level 2 | Level 2 |
| Flammability Rating Oxygen Index: 28 to 34 | UL 94 V-0 @ 0.125 in |  |
| Transistor Count | 1237 Devices |  |
| Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test |  |  |

1. For additional information, see Application Note AND8003/D.

## MC100EP196

Table 8. MAXIMUM RATINGS

| Symbol | Parameter | Condition 1 | Condition 2 | Rating | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {CC }}$ | PECL Mode Power Supply | $\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$ |  | 6 | V |
| $\mathrm{V}_{\mathrm{EE}}$ | NECL Mode Power Supply | $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ |  | -6 | V |
| $\mathrm{V}_{1}$ | PECL Mode Input Voltage NECL Mode Input Voltage | $\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V} \end{aligned}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{I}} \geq \mathrm{V}_{\mathrm{EE}} \end{aligned}$ | $\begin{gathered} \hline 6 \\ -6 \end{gathered}$ | $\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \end{aligned}$ |
| $\mathrm{I}_{\text {out }}$ | Output Current | Continuous Surge |  | $\begin{gathered} 50 \\ 100 \end{gathered}$ | $\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$ |
| $\mathrm{I}_{\text {BB }}$ | $\mathrm{V}_{\text {BB }}$ Sink/Source |  |  | $\pm 0.5$ | mA |
| $\mathrm{T}_{\text {A }}$ | Operating Temperature Range |  |  | -40 to +85 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\text {stg }}$ | Storage Temperature Range |  |  | -65 to +150 | ${ }^{\circ} \mathrm{C}$ |
| $\theta_{\mathrm{JA}}$ | Thermal Resistance (Junction-to-Ambient) | $\begin{aligned} & \hline 0 \mathrm{lfpm} \\ & 500 \mathrm{lfpm} \end{aligned}$ | LQFP-32 <br> LQFP-32 | $80$ | $\begin{aligned} & \hline{ }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$ |
| $\theta_{\text {Jc }}$ | Thermal Resistance (Junction-to-Case) | Standard Board | LQFP-32 | 12 to 17 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| $\mathrm{T}_{\text {sol }}$ | Wave SolderPb <br>  <br> $\mathrm{Pb}-\mathrm{Free}$ |  |  | $\begin{aligned} & 265 \\ & 265 \end{aligned}$ | ${ }^{\circ} \mathrm{C}$ |

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.
umw. BDTI C. com/ON

## MC100EP196

Table 9. DC CHARACTERISTICS, PECL $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}$ (Note 2)

| Symbol | Characteristic | $-40^{\circ} \mathrm{C}$ |  |  | $25^{\circ} \mathrm{C}$ |  |  | $85^{\circ} \mathrm{C}$ |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max | Min | Typ | Max | Min | Typ | Max |  |
| $\mathrm{I}_{\text {EE }}$ | Power Supply Current | 100 | 125 | 160 | 110 | 130 | 170 | 110 | 135 | 175 | mA |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage (Note 3) | 2155 | 2300 | 2405 | 2155 | 2300 | 2405 | 2155 | 2300 | 2405 | mV |
| $\mathrm{V}_{\text {OL }}$ | Output LOW Voltage (Note 3) | 1355 | 1520 | 1605 | 1355 | 1500 | 1605 | 1355 | 1485 | 1605 | mV |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage (Single-Ended) LVPECL LVCMOS LVTTL | $\begin{aligned} & 2075 \\ & 2000 \\ & 2000 \end{aligned}$ |  | $\begin{aligned} & 2420 \\ & 3300 \\ & 3300 \end{aligned}$ | $\begin{aligned} & 2075 \\ & 2000 \\ & 2000 \end{aligned}$ |  | $\begin{aligned} & 2420 \\ & 3300 \\ & 3300 \end{aligned}$ | $\begin{aligned} & 2075 \\ & 2000 \\ & 2000 \end{aligned}$ |  | $\begin{aligned} & 2420 \\ & 3300 \\ & 3300 \end{aligned}$ | mV |
| $\mathrm{V}_{\mathrm{IL}}$ | Input LOW Voltage (Single-Ended) LVPECL LVCMOS LVTTL | $\begin{gathered} 1355 \\ 0 \\ 0 \end{gathered}$ |  | $\begin{gathered} 1675 \\ 800 \\ 800 \end{gathered}$ | $\begin{gathered} 1355 \\ 0 \\ 0 \end{gathered}$ |  | $\begin{aligned} & 1675 \\ & 800 \\ & 800 \end{aligned}$ | $\begin{array}{\|c} 1355 \\ 0 \\ 0 \end{array}$ |  | $\begin{gathered} 1675 \\ 800 \\ 800 \end{gathered}$ | mV |
| $\mathrm{V}_{\text {BB }}$ | Output Voltage Reference | 1775 | 1875 | 1975 | 1775 | 1875 | 1975 | 1775 | 1875 | 1975 | mV |
| $\mathrm{V}_{\text {CF }}$ | LVTTL Mode Input Detect Voltage <br> @ $\mathrm{V}_{\mathrm{CF}}=700 \mu \mathrm{~A}$ | 1.4 | 1.5 | 1.6 | 1.4 | 1.5 | 1.6 | 1.4 | 1.5 | 1.6 | V |
| $\mathrm{V}_{\mathrm{EF}}$ | Reference Voltage for ECL Mode Connection | 1900 | 1960 | 2050 | 1875 | 1953 | 2050 | 1850 | 1945 | 2050 | mV |
| $\mathrm{V}_{\text {IHCMR }}$ | Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 4) | 2.0 |  | 3.3 | 2.0 |  | 3.3 | 2.0 |  | 3.3 | V |
| $\mathrm{I}_{\mathrm{H}}$ | Input HIGH Current (PECL) <br> IN, IN, EN, LEN, SETMIN, SETMAX |  |  | 150 |  |  | 150 |  |  | 150 | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\mathrm{HH}}$ | FTUNE Input High Current @ V ${ }_{\text {CC }}$ | 50 | 87 | 150 | 50 | 84 | 150 | 50 | 82 | 150 | $\mu \mathrm{A}$ |
| IIL | Input LOW Current (PECL) <br> IN I/ E D, ED S"ET/hIN, S |  |  |  |  | - |  |  |  |  | $\mu \mathrm{A}$ |
| IILL | FTUNE In MULOM Curient @V |  |  | 10. | - 0 |  | 10 |  | 0 | 10 | $\mu \mathrm{A}$ |

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 Ifpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.
2. Input and output parameters vary $1: 1$ with $\mathrm{V}_{\mathrm{CC}}$. $\mathrm{V}_{\text {EE }}$ can vary +0.3 V to -0.3 V .
3. All loading with $50 \Omega$ to $\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}$.
4. $\mathrm{V}_{I H C M R}$ min varies $1: 1$ with $\mathrm{V}_{E E}, \mathrm{~V}_{I H C M R}$ max varies $1: 1$ with $\mathrm{V}_{\mathrm{CC}}$. The $\mathrm{V}_{\mathrm{IHCMR}}$ range is referenced to the most positive side of the differential input signal.

## MC100EP196

Table 10. DC CHARACTERISTICS, NECL $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-3.3 \mathrm{~V}$ (Note 5)

| Symbol | Characteristic | $-40^{\circ} \mathrm{C}$ |  |  | $25^{\circ} \mathrm{C}$ |  |  | $85^{\circ} \mathrm{C}$ |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max | Min | Typ | Max | Min | Typ | Max |  |
| $\mathrm{I}_{\text {EE }}$ | Power Supply Current | 100 | 125 | 160 | 110 | 130 | 170 | 110 | 135 | 175 | mA |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage (Note 6) | -1145 | -1000 | -895 | -1145 | -1000 | -895 | -1145 | -1000 | -895 | mV |
| $\mathrm{V}_{\text {OL }}$ | Output LOW Voltage (Note 6) | -1945 | -1780 | -1695 | -1945 | -1800 | -1695 | -1945 | -1815 | -1695 | mV |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage (Single-Ended) LVNECL | -1225 |  | -880 | -1225 |  | -880 | -1225 |  | -880 | mV |
| $\mathrm{V}_{\mathrm{IL}}$ | Input LOW Voltage (Single-Ended) LVNECL | -1945 |  | -1625 | -1945 |  | -1625 | -1945 |  | -1625 | mV |
| $\mathrm{V}_{\mathrm{BB}}$ | Output Voltage Reference | -1525 | -1425 | -1325 | -1525 | -1425 | -1325 | -1525 | -1425 | -1325 | mV |
| $\mathrm{V}_{\mathrm{EF}}$ | Reference Voltage for ECL Mode Connection | -1400 | -1340 | -1250 | -1425 | -1347 | -1250 | -1450 | -1355 | -1250 | mV |
| VIHCMR | Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 7) | $\mathrm{V}_{\mathrm{EE}}+2.0$ |  | 0 | $\mathrm{V}_{\mathrm{EE}}+2.0$ |  | 0 | $\mathrm{V}_{\mathrm{EE}+2.0}$ |  | 0 | V |
| $\mathrm{I}_{\mathrm{H}}$ | Input HIGH Current IN, IN, EN, LEN, SETMIN, SETMAX |  |  | 150 |  |  | 150 |  |  | 150 | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\mathrm{HH}}$ | FTUNE Input High Current @ V ${ }_{\text {cc }}$ | 50 | 87 | 150 | 50 | 84 | 150 | 50 | 82 | 150 | $\mu \mathrm{A}$ |
| IIL | Input LOW Current IN, IN, EN, LEN, SETMIN, SETMAX | 0.5 |  |  | 0.5 |  |  | 0.5 |  |  | $\mu \mathrm{A}$ |
| IILL | FTUNE Input LOW Current @ $\mathrm{V}_{\text {EE }}$ | -10 | 0 | 10 | -10 | 0 | 10 | -10 | 0 | 10 | $\mu \mathrm{A}$ |

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 Ifpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied-individually under $r$ orm ${ }^{\prime}$ I ppen tii $g$ co ditior $s$ anı! n
5. Input and output $p / 1 a y$ efors (af) 1 with $V_{C C}$ ) EE Ca 1 fary +0.3 to -0.3 V .
6. All loading with $5 \Omega 0 / c-2.0, \square \square \square$
7. $\mathrm{V}_{\text {IHCMR }}$ min varies $1: 1$ with $\mathrm{V}_{\mathrm{EE}}, \mathrm{V}_{\mathrm{IHCMR}}$ max varies $1: 1$ with $\mathrm{V}_{\mathrm{CC}}$. The $\mathrm{V}_{\text {IHCMR }}$ range is referenced to the most positive side of the differential input signal.

Table 11. AC CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-3.0 \mathrm{~V}$ to -3.6 V or $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$ (Note 8)

| Symbol | Characteristic | $-40^{\circ} \mathrm{C}$ |  |  | $25^{\circ} \mathrm{C}$ |  |  | $85^{\circ} \mathrm{C}$ |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max | Min | Typ | Max | Min | Typ | Max |  |
| $\mathrm{f}_{\text {max }}$ | Maximum Frequency |  | 1.2 |  |  | 1.2 |  |  | 1.2 |  | GHz |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLL}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$ | Propagation Delay <br> IN to Q; D(0-9) =0 <br> IN to Q; $D(0-9)=1023$ <br> EN to Q; D(0-9) = 0 <br> D10 to CASCADE | $\begin{aligned} & 1810 \\ & 9500 \\ & 1780 \\ & 350 \end{aligned}$ | $\begin{gathered} 2210 \\ 11496 \\ 2277 \\ 450 \end{gathered}$ | $\begin{array}{\|c} 2610 \\ 13500 \\ 2780 \\ 550 \end{array}$ | $\begin{gathered} 1960 \\ 10000 \\ 1930 \\ 380 \end{gathered}$ | $\begin{array}{\|c} 2360 \\ 12258 \\ 2430 \\ 477 \end{array}$ | $\begin{gathered} 2760 \\ 14000 \\ 2930 \\ 580 \end{gathered}$ | $\begin{gathered} 2180 \\ 10955 \\ 2150 \\ 420 \end{gathered}$ | $\begin{gathered} 2580 \\ 13454 \\ 2650 \\ 520 \end{gathered}$ | $\begin{array}{\|c} 2980 \\ 15955 \\ 3150 \\ 620 \end{array}$ | ps |
| $\mathrm{t}_{\text {RANGE }}$ | Programmable Range $\{\mathrm{D}(0-9)=\mathrm{HI}\}-\{\mathrm{D}(0-9)=\mathrm{LO}\}$ | 8600 | 9285 | 10000 | 9200 | 9897 | 10700 | 9900 | 10875 | 12000 | ps |
| $\Delta \mathrm{t}$ | Step Delay (Note 9) D0 High <br>  D1 High <br>  D2 High <br>  D3 High <br>  D4 High <br>  D5 High <br>  D6 High <br>  D7 High <br> D8 High  <br>  D9 High | $\begin{gathered} 90 \\ 245 \\ 530 \\ 1060 \\ 2160 \\ 4335 \end{gathered}$ | $\begin{gathered} 7 \\ 23 \\ 39 \\ 58 \\ 137 \\ 293 \\ 590 \\ 1158 \\ 2317 \\ 4647 \end{gathered}$ | $\begin{gathered} 185 \\ 335 \\ 650 \\ 1265 \\ 2490 \\ 5010 \end{gathered}$ | $\begin{gathered} 100 \\ 260 \\ 560 \\ 1130 \\ 2290 \\ 4590 \end{gathered}$ | $\begin{gathered} 11 \\ 30 \\ 48 \\ 67 \\ 149 \\ 313 \\ 629 \\ 1237 \\ 2472 \\ 4955 \end{gathered}$ | $\begin{gathered} 200 \\ 370 \\ 710 \\ 1355 \\ 2680 \\ 5385 \end{gathered}$ | $\begin{gathered} 90 \\ 270 \\ 600 \\ 1200 \\ 2450 \\ 4935 \end{gathered}$ | $\begin{gathered} 13 \\ 32 \\ 53 \\ 73 \\ 154 \\ 337 \\ 681 \\ 1353 \\ 2712 \\ 5440 \end{gathered}$ | $\begin{gathered} 225 \\ 410 \\ 770 \\ 1520 \\ 3015 \\ 6015 \end{gathered}$ | ps |
| Mono | Monotonicity (Note 10) |  | 9 |  |  | 10 |  |  | 11 |  | ps |
| $\mathrm{t}_{\text {SKEW }}$ | Duty Cycle Skew (Note 11) $\left\|t_{\text {PHL }}-t_{\text {PLH }}\right\|$ |  | 20 |  |  | 22 |  |  | 27 |  | ps |
| $\mathrm{t}_{\mathrm{s}}$ | Setup Time <br> D to LEN <br> D to IN (Note 12) <br> EN to IN (Noto 13) | $\begin{aligned} & 150 \\ & 100 \\ & 150 \end{aligned}$ | $\begin{gathered} -10 \\ -130 \\ -105 \end{gathered}$ |  | $\begin{aligned} & 150 \\ & 100 \\ & 150 \end{aligned}$ | $\begin{gathered} -70 \\ -150 \\ -120 \end{gathered}$ |  | $\begin{array}{r} 150 \\ 100 \\ 150 \end{array}$ | $\begin{gathered} -70 \\ -165 \\ -140 \end{gathered}$ |  | ps |
| $t_{n}$ |  | $\begin{aligned} & 205 \\ & 250 \\ & \hline \end{aligned}$ | $\begin{aligned} & 170 \\ & 275 \end{aligned}$ | - |  | $\begin{aligned} & 7 \\ & 70 \\ & 305 \end{aligned}$ |  | $\begin{aligned} & 20 \\ & 20 \\ & 450 \\ & \hline \end{aligned}$ | $\begin{array}{r}  \\ 60 \\ 325 \\ \hline \end{array}$ |  | ps |
| $\mathrm{t}_{\mathrm{R}}$ | Release Time  <br>  EN to IN (Note 15) <br>  SET MAX to LEN <br>  SET MIN to LEN | $\begin{aligned} & 150 \\ & 400 \\ & 300 \end{aligned}$ | $\begin{gathered} -105 \\ 70 \\ 165 \end{gathered}$ |  | $\begin{aligned} & 150 \\ & 400 \\ & 350 \end{aligned}$ | $\begin{gathered} -120 \\ 110 \\ 180 \end{gathered}$ |  | $\begin{aligned} & 150 \\ & 400 \\ & 350 \end{aligned}$ | $\begin{gathered} -140 \\ 160 \\ 205 \end{gathered}$ |  | ps |
| $\mathrm{t}_{\mathrm{jit}}$ | Random Clock Jitter @ 1.2 GHz , SETMAX Delay |  | 3 |  |  | 3 |  |  | 3 |  | ps |
| $\mathrm{V}_{\mathrm{PP}}$ | Input Voltage Swing (Differential Configuration) | 150 | 800 | 1200 | 150 | 800 | 1200 | 150 | 800 | 1200 | mV |
| $\begin{aligned} & \hline \mathrm{t}_{\mathrm{r}} \\ & \mathrm{t}_{\mathrm{f}} \end{aligned}$ | Output Rise/Fall Time 20-80\% (Q) 20-80\% (CASCADE) | $\begin{gathered} 85 \\ 100 \end{gathered}$ | $\begin{aligned} & 110 \\ & 150 \end{aligned}$ | $\begin{aligned} & 130 \\ & 200 \end{aligned}$ | $\begin{gathered} 95 \\ 110 \end{gathered}$ | $\begin{aligned} & 120 \\ & 160 \end{aligned}$ | $\begin{aligned} & 145 \\ & 210 \end{aligned}$ | $\begin{aligned} & 110 \\ & 125 \end{aligned}$ | $\begin{aligned} & 135 \\ & 175 \end{aligned}$ | $\begin{aligned} & 160 \\ & 225 \end{aligned}$ | ps |

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 Ifpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.
8. Measured using a 750 mV source, $50 \%$ duty cycle clock source. All loading with $50 \Omega$ to $\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}$.
9. Specification limits represent the amount of delay added with the assertion of each individual delay control pin. The various combinations of asserted delay control inputs will typically realize DO resolution steps across the specified programmable range.
10. The monotonicity indicates the increased delay value for each binary count increment on the control inputs $D(0-9)$.
11. Duty cycle skew guaranteed only for differential operation measured from the cross point of the input to the cross point of the output.
12. This setup time defines the amount of time prior to the input signal the delay tap of the device must be set.
13. This setup time is the minimum time that EN must be asserted prior to the next transition of $\mathbb{N} / \mathbb{N}$ to prevent an output response greater than $\mathrm{V}_{\mathrm{CC}}-1425 \mathrm{mV}$ to that $\mathrm{IN} / / \mathrm{N}$ transition.
14. This hold time is the minimum time that $\overline{\mathrm{EN}}$ must remain asserted after a negative going $\mathbb{N}$ or positive going $\overline{\mathbb{N}}$ to prevent an output response greater than $\mathrm{V}_{\mathrm{CC}}-1425 \mathrm{mV}$ to that $\mathrm{IN} / \mathbb{N}$ transition.
15. This release time is the minimum time that EN must be deasserted prior to the next $I N / I N$ transition to ensure an output response that meets the specified IN to Q propagation delay and transition times.

## MC100EP196



Figure 4. AC Reference Measurement

## Using the FTUNE Analog Input

The analog FTUNE pin on the EP196 device is intended to add more delay in a tunable gate to enhance the 10 ps resolution capabilities of the fully digital EP196. The level of resolution obtained is dependent on the voltage applied to the FTUNE pin.

To provide this further level of resolution, the FTUNE pin must be capable of adjusting the additional delay finer than the 10 ps digital resolution (See Logic Diagram). This requirement is easily achieved because a 60 ps additional delay can be obtained over the entire FTUNE voltage range (See Figure 5). This extra analog range ensures that the

FTUNE pin will be capable even under worst case conditions of covering a digital resolution. Typically, the analog input will be driven by an external DAC to provide a digital control with very fine analog output steps. The final resolution of the device will be dependent on the width of the DAC chosen.

To determine the voltage range necessary for the FTUNE input, Figure 5 should be used. There are numerous voltage ranges which can be used to cover a given delay range; users are given the flexibility to determine which one best fits their designs.


Figure 5. Typical EP196 Delay versus FTUNE Voltage

## MC100EP196

## Cascading Multiple EP196s

To increase the programmable range of the EP196, internal cascade circuitry has been included. This circuitry allows for the cascading of multiple EP196s without the need for any external gating. Furthermore, this capability requires only one more address line per added E196. Obviously, cascading multiple programmable delay chips will result in a larger programmable range; however, this increase is at the expense of a longer minimum delay.

Figure 6 illustrates the interconnect scheme for cascading two EP196s. As can be seen, this scheme can easily be
expanded for larger EP196 chains. The D10 input of the EP196 is the cascade control pin and when assert HIGH switches output pin CASCADE to HIGH and pin CASCADE to LOW. With the interconnect scheme of Figure 6 when D10 is asserted, it signals the need for a larger programmable range than is achievable with a single device. The A11 address can be added to generate a cascade output for the next EP196. For a 2-device configuration, A11 is not required.


Figure 6. Cascading Interconnect Architecture

An expansion of the latch section of the block diagram is pictured in Figure 7. Use of this diagram will simplify the explanation of how the SETMIN and SETMAX circuitry works in cascade. When D10 of chip \#1 in Figure 5 is LOW, this device's cascade output will also be LOW while the CASCADE output will be HIGH. In this condition, the SETMIN pin of chip \#2 will be asserted HIGH and thus all of the latches of chip \#2 will be reset and the device will be set at its minimum delay.

Chip \#1, on the other hand, will have both SETMIN and SETMAX deasserted so that its delay will be controlled entirely by the address bus A0-A9. If the delay needed is greater than can be achieved with 1023 gate delays ( 1111111111 on the A0-A9 address bus), D10 will be asserted to signal the need to cascade the delay to the next EP196 device. When D10 is asserted, the SETMIN pin of
chip \#2 will be deasserted and the SETMAX pin asserted, resulting in the device delay to be the maximum delay. Table 12 shows the delay time of two EP196 chips in cascade.

To expand this cascading scheme to more devices, one simply needs to connect the D10 pin from the next chip to the address bus and CASCADE outputs to the next chip in the same manner as pictured in Figure 6. The only addition to the logic is the increase of one line to the address bus for cascade control of the second programmable delay chip.

Furthermore, to fully utilize EP196, the FTUNE pin can be used for additional delay and for finer resolution than 10 ps . As shown in Figure 5, an analog voltage input from DAC can adjust the FTUNE pin with an extra 60 ps of delay for each chip.


## MC100EP196

Table 12. CASCADED DELAY VALUE OF TWO EP196S

| VARIABLE INPUT TO CHIP \#1 AND SETMIN FOR CHIP \#2 |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| INPUT FOR CHIP \#1 |  |  |  |  |  |  |  |  |  |  |  | Total |
| D10 | D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | Delay Value | Delay Value |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 ps | 4400 ps |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 10 ps | 4410 ps |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 20 ps | 4420 ps |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 30 ps | 4430 ps |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 40 ps | 4440 ps |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 50 ps | 4450 ps |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 60 ps | 4460 ps |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 70 ps | 4470 ps |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 80 ps | 4480 ps |
| 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 160 ps | 4560 ps |
| 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 320 ps | 4720 ps |
| 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 640 ps | 5040 ps |
| 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1280 ps | 5680 ps |
| 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2560 ps | 6960 ps |
| 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5120 ps | 9520 ps |
| 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 10230 ps | 14630 ps |



## MC100EP196

## Multi-Channel Deskewing

The most practical application for EP196 is in multiple channel delay matching. Slight differences in impedance and cable length can create large timing skews within a high-speed system. To deskew multiple signal channels, each channel can be sent through each EP196 as shown in

Figure 8. One signal channel can be used as reference and the other EP196s can be used to adjust the delay to eliminate the timing skews. Nearly any high-speed system can be fine tuned (as small as 10 ps ) to reduce the skew to extremely tight tolerances using the available FTUNE pin.


## MC100EP196



Figure 9. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D - Termination of ECL Logic Devices.)

## ORDERING INFORMATION

| Device | Package | Shipping $^{\dagger}$ |
| :--- | :--- | :--- |
| MC100EP196FA | LQFP-32 | 250 Units / Tray |
| MC100EP196FAG | LQFP-32 <br> (Pb-Free) | 250 Units / Tray |
| MC100EP196FAR2 | LQFP-32 | $2000 /$ Tape \& Reel |
| MC100EP196FAR2G | LQFP-32 <br> (Pb-Free) | $2000 /$ Tape \& Reel |

$\dagger$ For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


## MC100EP196

## PACKAGE DIMENSIONS



ECLinPS is a trademark of Semiconductor Components Industries, LLC.

> ON Semiconductor and ON are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

## PUBLICATION ORDERING INFORMATION

## LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free

USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

