MC74VHC4316

Quad Analog Switch/ Multiplexer/Demultiplexer with Separate Analog and Digital Power Supplies

High-Performance Silicon-Gate CMOS

The MC74VHC4316 utilizes silicon-gate CMOS technology to achieve fast propagation delays, low ON resistances, and low OFF-channel leakage current. This bilateral switch/multiplexer/ demultiplexer controls analog and digital voltages that may vary across the full analog power-supply range (from V_{CC} to V_{EE}).

The VHC4316 is similar in function to the metal-gate CMOS MC14016 and MC14066, and to the High-Speed CMOS HC4066A. Each device has four independent switches. The device control and Enable inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs. The device has been designed so that the ON resistances $\left(\mathrm{R}_{\mathrm{ON}}\right)$ are much more linear over input voltage than R_{ON} of metal-gate CMOS analog switches. Logic-level translators are provided so that the On/Off Control and Enable logic-level voltages need only be V_{CC} and GND, while the switch is passing signals ranging between V_{CC} and V_{EE}. When the Enable pin (active-low) is high, all four analog switches are turned off.

Features

- Logic-Level Translator for On/Off Control and Enable Inputs
- Fast Switching and Propagation Speeds
- High ON/OFF Output Voltage Ratio
- Diode Protection on All Inputs/Outputs
- Analog Power-Supply Voltage Range $\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)=2.0$ to 12.0 V
- Digital (Control) Power-Supply Voltage Range $\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{GND}\right)=2.0 \mathrm{~V}$ to 6.0 V , Independent of V_{EE}
- Improved Linearity of ON Resistance
- Chip Complexity: 66 FETs or 16.5 Equivalent Gates
- These are Pb -Free Devices

ON Semiconductor ${ }^{\text {r }}$

http://onsemi.com

ORDERING INFORMATION

Device	Package	Shipping ${ }^{\dagger}$
MC74VHC4316DG	SOIC-16 (Pb-Free)	48 Units / Rail
MC74VHC4316DR2G	SOIC-16 (Pb-Free)	$2500 /$ Tape\&Reel
MC74VHC4316DTG	TSSOP16 (Pb-Free)	96 Units / Rail
MC74VHC4316DTR2G	TSSOP16 (Pb-Free)	2500/Tape\&Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

$\mathrm{X}_{\mathrm{A}} \square 1 \bullet$	16	V_{CC}
Y_{A} [2	15	A ON/OFF
Y_{B} ¢ 3	14	D ON/OFF CONTROL
$\mathrm{X}_{\mathrm{B}} \mathrm{L}_{4}$	13	X_{D}
$\begin{aligned} & \text { B ON/OFF } \\ & \text { CONTROL } \end{aligned}$	12	Y_{D}
CON/OFF 6	11	Y_{C}
ENABLE [7	10	X_{6}
GND [8	9	V_{EE}

FUNCTION TABLE

Inputs		State of Analog
Switch		

X = Don't Care.

Figure 1. Pin Assignment

Figure 2. Logic Diagram

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	Positive DC Supply Voltage	(Ref. to GND) (Ref. to $\left.\mathrm{V}_{\mathrm{EE}}\right)$	-0.5 to +7.0 -0.5 to +14.0
$\mathrm{~V}_{\mathrm{EE}}$	Negative DC Supply Voltage (Ref. to GND)	V	
$\mathrm{V}_{\text {IS }}$	Analog Input Voltage	-7.0 to +0.5	V
$\mathrm{~V}_{\text {in }}$	DC Input Voltage (Ref. to GND)	$\mathrm{V}_{\mathrm{EE}}-0.5$ to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
I	DC Current Into or Out of Any Pin	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
P_{D}	Power Dissipation in Still AirSOIC Package* TSSOP Package*	500 450	mW
$\mathrm{~T}_{\text {stg }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature, 1 mm from Case for 10 Seconds (SOIC or TSSOP Package)	260	${ }^{\circ} \mathrm{C}$

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, $V_{\text {in }}$ and $V_{\text {out }}$ should be constrained to the range $G N D \leq\left(V_{\text {in }}\right.$ or $\left.V_{\text {out }}\right) \leq \mathrm{V}_{\mathrm{CC}}$. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open. I/O pins must be connected to a properly terminated line or bus.

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.
*Derating - SOIC Package: $-7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 65° to $125^{\circ} \mathrm{C}$

$$
\text { TSSOP Package: }-6.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C} \text { from } 65^{\circ} \text { to } 125^{\circ} \mathrm{C}
$$

For high frequency or heavy load considerations, see Chapter 2 of the ON Semiconductor High-Speed CMOS Data Book (DL129/D).

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V_{CC}	Positive DC Supply Voltage (Ref. to GND)	2.0	6.0	V
V_{EE}	Negative DC Supply Voltage (Ref. to GND)	-6.0	GND	V
$\mathrm{V}_{\text {IS }}$	Analog Input Voltage $/$ //	V_{EE}	$\mathrm{V}_{\text {CC }}$	V
$V_{\text {in }}$	Digital Input Voltage (Ref. to GND)	GND	V_{CC}	V
$\mathrm{V}_{10}{ }^{\text {* }}$	Static or Dynamic Voltage Across Switch	-	1.2	V
TA	Operating Temperature, All Package Types	-55	+ 125	${ }^{\circ} \mathrm{C}$
$t_{r}, \mathrm{t}_{\mathrm{f}}$	Input Rise and Fall Time $\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$ (Control or Enable Inputs) $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ (Figure 10) $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ $\mathrm{~V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 1000 \\ 600 \\ 500 \\ 400 \end{gathered}$	ns

*For voltage drops across the switch greater than 1.2 V (switch on), excessive V_{Cc} current may be drawn; i.e., the current out of the switch may contain both V_{Cc} and switch input components. The reliability of the device will be unaffected unless the Maximum Ratings are exceeded.

DC ELECTRICAL CHARACTERISTICS Digital Section (Voltages Referenced to GND) VEE $=$ GND Except Where Noted

Symbol	Parameter	Test Conditions	$\underset{\mathbf{V}}{\mathrm{v}_{\mathrm{cc}}}$	Guaranteed Limit			Unit
				$\begin{gathered} -55 \text { to } \\ 25^{\circ} \mathrm{C} \end{gathered}$	$\leq 85^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$	
V_{IH}	Minimum High-Level Voltage, Control or Enable Inputs	$\mathrm{R}_{\text {on }}=$ Per Spec	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 1.5 \\ 2.1 \\ 3.15 \\ 4.2 \end{gathered}$	$\begin{gathered} 1.5 \\ 2.1 \\ 3.15 \\ 4.2 \end{gathered}$	$\begin{gathered} 1.5 \\ 2.1 \\ 3.15 \\ 4.2 \end{gathered}$	V
V_{IL}	Maximum Low-Level Voltage, Control or Enable Inputs	$\mathrm{R}_{\text {on }}=$ Per Spec	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} \hline 0.5 \\ 0.9 \\ 1.35 \\ 1.8 \end{gathered}$	$\begin{gathered} \hline 0.5 \\ 0.9 \\ 1.35 \\ 1.8 \end{gathered}$	$\begin{gathered} \hline 0.5 \\ 0.9 \\ 1.35 \\ 1.8 \end{gathered}$	V
$\mathrm{l}_{\text {in }}$	Maximum Input Leakage Current, Control or Enable Inputs	$\begin{aligned} & V_{\text {in }}=V_{C C} \text { or GND } \\ & V_{E E}=-6.0 \mathrm{~V} \end{aligned}$	6.0	± 0.1	± 1.0	± 1.0	$\mu \mathrm{A}$
I_{CC}	Maximum Quiescent Supply Current (per Package)	$\begin{array}{\|ll} \hline V_{\text {in }}=V_{C C} \text { or GND } & \\ V_{I O}=0 V & V_{E E}=G N D \\ & V_{E E}=-6.0 \end{array}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 2 \\ & 4 \end{aligned}$	$\begin{aligned} & 20 \\ & 40 \end{aligned}$	$\begin{gathered} 40 \\ 160 \end{gathered}$	$\mu \mathrm{A}$

NOTE: Information on typical parametric values can be found in Chapter 2 of the ON Semiconductor High-Speed CMOS Data Book (DL129/D).

DC ELECTRICAL CHARACTERISTICS Analog Section (Voltages Referenced to V_{EE})

Symbol	Parameter	Test Conditions	v_{cc}	$\underset{\mathrm{V}}{\mathrm{~V}_{\mathrm{EE}}}$	Guaranteed Limit			Unit
					$\begin{gathered} -55 \text { to } \\ 25^{\circ} \mathrm{C} \end{gathered}$	$\leq 85^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$	
$\mathrm{R}_{\text {on }}$	Maximum "ON" Resistance	$\begin{aligned} & \mathrm{V}_{\mathrm{in}}=\mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IS}}=\mathrm{V}_{\mathrm{CC}} \text { to } \mathrm{V}_{\mathrm{EE}} \\ & \mathrm{IS}_{\mathrm{S}} \leq 2.0 \mathrm{~mA} \end{aligned}$	$\begin{gathered} 2.0^{\star} \\ 45 \\ 4.5 \\ 6.0 \end{gathered}$	$\begin{gathered} \hline 0.0 \\ 0.0 \\ -4.5 \\ -6.0 \\ \hline \end{gathered}$	$\begin{aligned} & 160 \\ & 90 \\ & 90 \end{aligned}$	$\begin{array}{r} - \\ 200 \\ 110 \\ \quad 110 \end{array}$	$\begin{aligned} & 240 \\ & 130 \\ & 130 \end{aligned}$	Ω
	MMM	$\begin{aligned} & V_{\text {in }}=V_{I H} \\ & V_{I S}=V_{C C} \text { or } V_{E E} \text { (Endpoints) } \\ & I_{S} \leq 2.0 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 4.5 \\ & 6.0 \end{aligned}$	0.0 0.0 -4.5 -6.0	- 90 70 70		$\begin{gathered} - \\ 140 \\ 105 \\ 105 \end{gathered}$	
$\Delta \mathrm{R}_{\text {on }}$	Maximum Difference in "ON" Resistance Between Any Two Channels in the Same Package	$\begin{array}{\|l} \mathrm{V}_{\text {in }} \mathrm{V}_{\mathrm{IH}} \\ \mathrm{~V}_{\mathrm{IS}}=1 / 2\left(\mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right) \\ \mathrm{I}_{\mathrm{S}} \leq 2.0 \mathrm{~mA} \end{array}$	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} \hline 0.0 \\ 0.0 \\ -4.5 \\ -6.0 \end{gathered}$	$\begin{aligned} & 20 \\ & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & - \\ & 25 \\ & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 30 \\ & 25 \\ & 25 \end{aligned}$	Ω
$\mathrm{I}_{\text {off }}$	Maximum Off-Channel Leakage Current, Any One Channel	$\begin{aligned} & \hline \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{IO}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{V}_{\mathrm{EE}} \\ & \text { Switch Off (Figure 3) } \end{aligned}$	6.0	-6.0	0.1	0.5	1.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {on }}$	Maximum On-Channel Leakage Current, Any One Channel	$\begin{aligned} & \hline \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IS}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{V}_{\mathrm{EE}} \\ & \text { (Figure 4) } \end{aligned}$	6.0	-6.0	0.1	0.5	1.0	$\mu \mathrm{A}$

NOTE: Information on typical parametric values can be found in Chapter 2 of the ON Semiconductor High-Speed CMOS Data Book (DL129/D).
*At supply voltage ($\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$) approaching 2.0 V the analog switch-on resistance becomes extremely non-linear. Therefore, for low-voltage operation, it is recommended that these devices only be used to control digital signals.

AC ELECTRICAL CHARACTERISTICS ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, Control or Enable $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}, \mathrm{~V}_{\mathrm{EE}}=\mathrm{GND}$)

Symbol	Parameter	$\underset{\mathrm{V}}{\mathrm{v}_{\mathrm{cc}}}$	Guaranteed Limit			Unit
			$\begin{gathered} -55 \text { to } \\ 25^{\circ} \mathrm{C} \end{gathered}$	$\leq 85^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}}, \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Maximum Propagation Delay, Analog Input to Analog Output (Figures 8 and 9)	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 40 \\ 6 \\ 5 \end{gathered}$	$\begin{gathered} 50 \\ 8 \\ 7 \end{gathered}$	$\begin{gathered} \hline 60 \\ 9 \\ 8 \end{gathered}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLZ}}, \\ & \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Maximum Propagation Delay, Control or Enable to Analog Output (Figures 10 and 11)	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{gathered} 130 \\ 40 \\ 30 \end{gathered}$	$\begin{gathered} \hline 160 \\ 50 \\ 40 \end{gathered}$	$\begin{gathered} 200 \\ 60 \\ 50 \end{gathered}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLL}}, \\ & \mathrm{t}_{\mathrm{PzH}} \end{aligned}$	Maximum Propagation Delay, Control or Enable to Analog Output (Figures 10 and 11)	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 140 \\ & 40 \\ & 30 \end{aligned}$	$\begin{aligned} & \hline 175 \\ & 50 \\ & 40 \end{aligned}$	$\begin{gathered} 250 \\ 60 \\ 50 \end{gathered}$	ns
C	Maximum CapacitanceON/OFF Control and Enable Inputs Control Input = GND Analog I/O Feedthrough	-	$\begin{aligned} & \hline 10 \\ & \hline \\ & 35 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \hline 10 \\ & \hline \\ & 35 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \hline 10 \\ & \hline \\ & 35 \\ & 1.0 \end{aligned}$	pF

1. For propagation delays with loads other than 50 pF, see Chapter 2 of the ON Semiconductor High-Speed CMOS Data Book (DL129/D). 2. Information on typical parametric values can be found in Chapter 2 of the ON Semiconductor High-Speed CMOS Data Book (DL129/D).

		Typical @ $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{Cc}}=5.0 \mathrm{~V}$	
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance (Per Switch) (Figure 13)*	15	pF

*Used to determine the no-load dynamic power consumption: $P_{D}=C_{P D} V_{C C}{ }^{2} f+I_{C C} V_{C C}$. For load considerations, see Chapter 2of the ON Semiconductor High-Speed CMOS Data Book (DL129/D).

ADDITIONAL APPLICATION CHARACTERISTICS (GND = 0 V)

Symbol	Parameter	Test Conditions	V_{cc} V	V_{VE}	$\begin{aligned} & \text { Limit }^{*} \\ & 25^{\circ} \mathrm{C} \end{aligned}$	Unit
BW	Maximum On-Channèl Bandwidth or Minimum Frequency Response (Figure 5)	$\mathrm{f}_{\text {in }}=1 \mathrm{MHz}$ Sine Wave Adjust $f_{\text {in }}$ Voltage to Obtain 0 dBm at V_{OS} Increase $\mathrm{f}_{\text {in }}$ Frequency UntildB Meter Reads-3 dB $R_{L}=50 \Omega, C_{L}=10 \mathrm{pF}$	$\begin{array}{\|} 2.25 \\ 4.50 \\ 6.00 \end{array}$	$\begin{array}{\|l} -2.25 \\ -4.50 \\ -6.00 \end{array}$	$\begin{aligned} & \hline 150 \\ & 160 \\ & 160 \end{aligned}$	MHz
-	Off-Channel Feedthrough Isolation (Figure 6)	$\begin{aligned} & \text { fin } \equiv \text { Sine Wave } \\ & \text { Adjust } f_{\text {in }} \text { Voltage to Obtain } 0 \mathrm{dBm} \text { at } \mathrm{V}_{\mathrm{IS}} \\ & \mathrm{f}_{\text {in }}=10 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=600 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{f}_{\text {in }}=1.0 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF} \end{aligned}$	$\begin{aligned} & 2.25 \\ & 4.50 \\ & 6.00 \\ & \hline 2.25 \\ & 4.50 \\ & 6.00 \end{aligned}$	-2.25 -4.50 -6.00 -2.25 -4.50 -6.00	-50 -50 -50 -40 -40 -40	dB
-	Feedthrough Noise, Control to Switch (Figure 7)	$\begin{aligned} & V_{\text {in }} \leq 1 \mathrm{MHz} \text { Square Wave }\left(\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}\right) \\ & \text { Adjust } R_{\mathrm{L}} \text { at Setup so that } \mathrm{I}_{\mathrm{S}}=0 \mathrm{~A} \\ & R_{\mathrm{L}}=600 \Omega, C_{\mathrm{L}}=50 \mathrm{pF} \\ & R_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF} \end{aligned}$	$\begin{aligned} & 2.25 \\ & 4.50 \\ & 6.00 \\ & \hline 2.25 \\ & 4.50 \\ & 6.00 \end{aligned}$	-2.25 -4.50 -6.00 -2.25 -4.50 -6.00	60 130 200 30 65 100	mV PP
-	Crosstalk Between Any Two Switches (Figure 12)	$\begin{aligned} & \mathrm{f}_{\text {in }} \equiv \text { Sine Wave } \\ & \text { Adjust } \mathrm{f}_{\text {in }} \text { Voltage to Obtain } 0 \mathrm{dBm} \text { at } V_{\text {IS }} \\ & \qquad \mathrm{f}_{\text {in }}=10 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=600 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{f}_{\text {in }}=1.0 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF} \end{aligned}$	$\begin{aligned} & 2.25 \\ & 4.50 \\ & 6.00 \\ & \hline 2.25 \\ & 4.50 \\ & 6.00 \end{aligned}$	-2.25 -4.50 -6.00 -2.25 -4.50 -6.00	-70 -70 -70 -80 -80 -80	dB
THD	Total Harmonic Distortion (Figure 14)	$\begin{aligned} \hline \mathrm{f}_{\text {in }}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{THD}=\mathrm{THD} \text { Measured }-T H D_{\text {Source }} \\ \mathrm{V}_{\text {IS }}=4.0 \mathrm{VPP} \text { sine wave } \\ \mathrm{V}_{\text {IS }}=8.0 \mathrm{VPP}_{\text {s }} \text { sine wave } \\ \mathrm{V}_{\text {IS }}=11.0 \mathrm{VPP}_{\mathrm{PP}} \text { sine wave } \\ \hline \end{aligned}$	$\begin{aligned} & 2.25 \\ & 4.50 \\ & 6.00 \\ & \hline \end{aligned}$	$\begin{aligned} & -2.25 \\ & -4.50 \\ & -6.00 \end{aligned}$	$\begin{aligned} & 0.10 \\ & 0.06 \\ & 0.04 \end{aligned}$	\%

*Limits not tested. Determined by design and verified by qualification.

Figure 1. On Resistance Test Set-Up
unw. BDTI C. com/O\

Figure 2. Maximum Off Channel Leakage Current, Any One Channel, Test Set-Up

*Includes all probe and jig capacitance.
Figure 4. Maximum On-Channel Bandwidth Test Set-Up

*Includes all probe and jig capacitance.
Figure 6. Feedthrough Noise, Control to Analog Out, Test Set-Up

Figure 3. Maximum On Channel Leakage Current, Test Set-Up

Figure 5. Off-Channel Feedthrough Isolation, Test Set-Up

Figure 7. Propagation Delays, Analog In to Analog Out

*Includes all probe and jig capacitance.
Figure 8. Propagation Delay Test Set-Up

*Includes all probe and jig capacitance.
Figure 10. Propagation Delay Test Set-Up

Figure 12. Power Dissipation Capacitance Test Set-Up

Figure 9. Propagation Delay, ON/OFF Control to Analog Out

*Includes all probe and jig capacitance.
Figure 11. Crosstalk Between Any Two Switches, Test Set-Up (Adjacent Channels Used)

*Includes all probe and jig capacitance.
Figure 13. Total Harmonic Distortion, Test Set-Up

APPLICATIONS INFORMATION

Figure 14. Plot, Harmonic Distortion

The Enable and Control pins should be at V_{CC} or GND logic levels, V_{CC} being recognized as logic high and GND being recognized as a logic low. Unused analog inputs/outputs may be left floating (not connected). However, it is advisable to tie unused analog inputs and outputs to V_{CC} or V_{EE} through a low value resistor. This minimizes crosstalk and feedthrough noise that may be picked up by the unused I/O pins.

The maximum analog voltage swings are determined by the supply voltages V_{CC} and V_{EE}. The positive peak analog voltage should not exceed VCC. Similarly, the negative peak analog voltage should not go below V_{EE}. In the example below, the difference between V_{CC} and V_{EE} is 12 V .

Figure 15.

Therefore, using the configuration in Figure 15, a maximum analog signal of twelve volts peak-to-peak can be controlled.

When voltage transients above V_{CC} and/or below V_{EE} are anticipated on the analog channels, external diodes (Dx) are recommended as shown in Figure 16. These diodes should be small signal, fast turn-on types able to absorb the maximum anticipated current surges during clipping. An alternate method would be to replace the Dx diodes with MOSORBS (MOSORB ${ }^{\text {TM }}$ is an acronym for high current surge protectors). MOSORBs are fast turn-on devices ideally suited for precise dc protection with no inherent wear out mechanism.

Figure 16. Transient Suppressor Application

Figure 17. LSTTL/NMOS to HCMOS Interface

Figure 18. Switching a 0-to-12 V Signal Using a Single Power Supply (GND $\neq 0$ V)

Figure 19. 4-Input Multiplexer

Figure 20. Sample/Hold Amplifier

PACKAGE DIMENSIONS

PACKAGE DIMENSIONS

MOSORB is a trademark of Semiconductor Components Industries, LLC (SCILLC).
ON Semiconductor and 01 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Fax: Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support: Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

