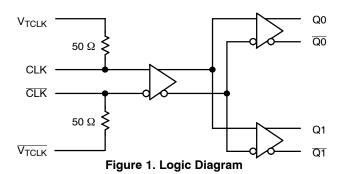
2.5V/3.3V Differential 1:2 Clock/Data Fanout Buffer/ Translator with CML Outputs and Internal Termination

Description

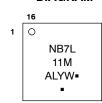

The NB7L11M is a differential 1-to-2 clock/data distribution chip with internal source termination and CML output structure, optimized for low skew and minimal jitter. The device is functionally equivalent to the EP11, LVEP11, or SG11 devices. Device produces two identical output copies of clock or data operating up to 8 GHz or 12 Gb/s, respectively. As such, NB7L11M is ideal for SONET, GigE, Fiber Channel, Backplane and other clock/data distribution applications.

Inputs incorporate internal 50 Ω termination resistors and accept LVPECL, CML, LVCMOS, LVTTL, or LVDS (See Table 6). Differential 16 mA CML output provides matching internal 50 Ω terminations, and 400 mV output swings when externally terminated, 50 Ω to V_{CC} (See Figure 14).

The device is offered in a low profile 3x3 mm 16-pin QFN package. Application notes, models, and support documentation are available at www.onsemi.com.

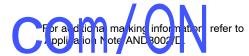
Features

- Maximum input Cyck F squency in t & Gliz Typical
- Maximum Input Data Rate up to 12 Gb/s Typical
- < 0.5 ps of RMS Clock Jitter
- < 10 ps of Data Dependent Jitter
- 30 ps Typical Rise and Fall Times
- 110 ps Typical Propagation Delay
- 3 ps Typical Within Device Skew
- Operating Range: $V_{CC} = 2.375 \text{ V}$ to 3.465 V with $V_{EE} = 0 \text{ V}$
- CML Output Level (400 mV Peak-to-Peak Output) Differential Output Only
- 50 Ω Internal Input and Output Termination Resistors
- Functionally Compatible with Existing 2.5 V/3.3 V LVEL, LVEP, EP and SG Devices
- Pb-Free Packages are Available*


ON Semiconductor®

http://onsemi.com

MARKING DIAGRAM*


QFN-16 MN SUFFIX CASE 485G

A = Assembly Location

L = Wafer Lot
 Y = Year
 W = Work Week
 Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 10 of this data sheet.

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

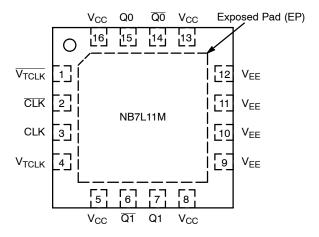


Figure 2. QFN-16 Pinout (Top View)

Table 1. PIN DESCRIPTION

Pin	Name	I/O	Description
1	V _{TCLK}	-	Internal 50 Ω Termination Pin for $\overline{\text{CLK}}$
2	CLK	LVPECL, CML, LVCMOS, LVTTL, LVDS	Inverted Differential Clock/Data Input. (Note 1)
3	CLK	LVPECL, CML, LVCMOS, LVTTL, LVDS	Noninverted Differential Clock/Data Input. (Note 1)
4	V _{TCLK}		IIII rriai το Ω T rmin atio. Pin for CLK
5,8,13,16	100	W.B	Positive Supply Voltage. All V _{CC} p as must be externally connected to a Power Supply to cuarantee proper about the connected to a Power Supply
6	Q1	CML Output	Inverted $\overline{\text{CLK}}$ output 1 with internal 50 Ω source termination resistor. (Note 2)
7	Q1	CML Output	Noninverted CLK output 1 with internal 50 Ω source termination resistor. (Note 2)
9,10,11,12	V _{EE}	-	Negative Supply Voltage. All $V_{\mbox{\footnotesize{EE}}}$ pins must be externally connected to a Power Supply to guarantee proper operation.
14	Q0	CML Output	Inverted $\overline{\text{CLK}}$ output 0 with internal 50 Ω source termination resistor. (Note 2)
15	Q0	CML Output	Noninverted CLK output 0 with internal 50 Ω source termination resistor. (Note 2)
_	EP	-	Exposed Pad. The thermally exposed pad on package bottom (see case drawing) must be attached to a heatsinking conduit. It is recommended to connect the EP to the lower potential (V_{EE}).

In the differential configuration when the input termination pins (V_{TCLK}, V_{TCLK}) are connected to a common termination voltage or left open, and if no signal is applied on CLK and CLK then the device will be susceptible to self–oscillation.
 CML outputs require 50 Ω receiver termination resistor to V_{CC} for proper operation.

Table 2. ATTRIBUTES

Characte	Value				
ESD Protection	Human Body Model Machine Model Charged Device Model	> 5	00 V 0 V 00 V		
Moisture Sensitivity (Note 3)	Pb Pkg	Pb-Free Pkg			
	QFN-16	Level 1	Level 1		
Flammability Rating	UL 94 V-0	@ 0.125 in			
Transistor Count	28	35			
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test					

^{3.} For additional information, see Application Note AND8003/D.

Table 3. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	Positive Power Supply	V _{EE} = 0 V		3.6	V
VI	Input Voltage	V _{EE} = 0 V	$V_{EE} \leq V_I \leq V_{CC}$	3.6	V
V _{INPP}	Differential Input Voltage CLK - CLK	$\begin{array}{c} V_{CC} - V_{EE} \geq 2.8 \text{ V} \\ V_{CC} - V_{EE} < 2.8 \text{ V} \end{array}$		2.8 V _{CC} – V _{EE}	V
I _{IN}	Input Current Through R_T (50 Ω Resistor)	Static Surge		45 80	mA mA
l _{out}	Output Current	Continuous Surge		25 50	mA mA
T _A	Operating Temperature Range	QFN-16		-40 to +85	°C
T _{stg}	Stotage Timb rature Range		COM	- 35 to + 50	°C
$\theta_{\sf JA}$	Tite that Resistance (Junctio -to A nbir nt) (Note 4)	0 Ifpm 500 Ifpm	C FN-16 QFN-16	4! 36	°C/W °C/W
$\theta_{\sf JC}$	Thermal Resistance (Junction-to-Case)	2S2P (Note 4)	QFN-16	3 to 4	°C/W
T _{sol}	Wave Solder Pb Pb-Free			265 265	°C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

4. JEDEC standard multilayer board – 2S2P (2 signal, 2 power).

Table 4. DC CHARACTERISTICS, CLOCK Inputs, CML Outputs ($V_{CC} = 2.375 \text{ V}$ to 3.465 V, $V_{EE} = 0 \text{ V}$, $T_A = -40 ^{\circ}\text{C}$ to $+85 ^{\circ}\text{C}$) (Note 5)

Symbol	Characteristic	Min	Тур	Max	Unit
I _{CC}	Power Supply Current (Input and Outputs open)		85	105	mA
V _{OH}	Output HIGH Voltage (Note 6)	V _{CC} - 60	V _{CC} – 20	V _{CC}	mV
V _{OL}	Output LOW Voltage (Note 6)	V _{CC} - 530	V _{CC} – 420	V _{CC} – 360	mV
Differential	Input Driven Single-Ended (see Figures 10 & 12) (Note 8)				
V _{th}	Input Threshold Reference Voltage Range (Note 7)	1125		V _{CC} – 75	mV
V _{IH}	Single-ended Input HIGH Voltage (Note 8)	V _{th} + 75		V _{CC}	mV
V _{IL}	Single-ended Input LOW Voltage (Note 8)	V _{EE}		V _{th} – 75	mV
Differential	Inputs Driven Differentially (see Figures 11 & 13) (Note 8)	•	•		
V _{IHCLK}	Differential Input HIGH Voltage	1200		V _{CC}	mV
V _{ILCLK}	Differential Input LOW Voltage	V _{EE}		V _{CC} – 75	mV
V _{CMR}	Input Common Mode Range (Differential Configuration)	1163		V _{CC} – 38	mV
V _{ID}	Differential Input Voltage (V _{IHCLK} – V _{ILCLK})	75		2500	mV
I _{IH}	Input HIGH Current CLK / CLK (V _{TCLK} /V _{TCLK} Open)	0	25	100	μΑ
I _{IL}	Input LOW Current CLK / CLK (V _{TCLK} /V _{TCLK} Open)	-10	0	10	μΑ
R _{TIN}	Internal Input Termination Resistor	45	50	55	Ω
R _{TOUT}	Internal Output Termination Resistor	45	50	55	Ω
R _{Temp Coef}	Internal I/O Termination Resistor Temperature Coefficient		6.38		mΩ/°C

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 fpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional coeration of the covic exceeding these conditions is not implied. De it as profitation values a 12 to pilled in the dually und provide a condition and not valid simulations and not valid simulations.

5. Input and output previous vary 1:1 vith) c.

6. CML outputs require 50 \(\text{Q} \) receiver termination resistors to \(\text{V}_{CC} \) for proper operation. specification limit

^{7.} V_{th} is applied to the complementary input when operating in single-ended mode. 8. V_{CMR} min varies 1:1 with V_{EE} , V_{CMR} max varies 1:1 with V_{CC} .

Table 5. AC CHARACTERISTICS (V_{CC} = 2.375 V to 3.465 V, V_{EE} = 0 V; Note 9)

Symbol	mbol Characteristic		−40°C		25°C			85°C			Unit
		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
V _{OUTPP}	Output Voltage Amplitude (@ $V_{INPPmin}$) $f_{in} \le 6$ GHz (See Figure 3) $f_{in} \le 8$ GHz	280 140	400 300		280 140	400 300		280 140	400 300		mV
f _{data}	Maximum Operating Data Rate	10	12		10	12		10	12		Gb/s
t _{PLH} , t _{PHL}	Propagation Delay to Output Differential	70	110	150	70	110	150	70	110	150	ps
t _{SKEW}	Duty Cycle Skew (Note 10) Within-Device Skew Device-to-Device Skew (Note 11)		2.0 3.0 20	5.0 15 50		2.0 3.0 20	5.0 15 50		2.0 3.0 20	5.0 15 50	ps
^t JITTER	RMS Random Clock Jitter (Note 12) $f_{in} = 6 \text{ GHz}$ $f_{in} = 8 \text{ GHz}$ $\text{Peak/Peak Data Dependent Jitter}$ $f_{in} = 2.488 \text{ Gb/s}$ (Note 13) $f_{data} = 5 \text{ Gb/s}$ $f_{data} = 10 \text{ Gb/s}$		0.2 0.2 2.0 3.0 5.0	0.5 0.5 5.0 8.0 10		0.2 0.2 2.0 3.0 5.0	0.5 0.5 5.0 8.0 10		0.2 0.2 2.0 3.0 5.0	0.5 0.5 5.0 8.0 10	ps
V _{INPP}	Input Voltage Swing/Sensitivity (Differential Configuration) (Note 14)	75	400	2500	75	400	2500	75	400	2500	mV
t _r t _f	Output Rise/Fall Times @ 1 GHz Q, Q (20% - 80%)		30	60		30	60		30	60	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

Measured by fc c n J V N γ T (T /P) from the duty cycle clock soulce. All loading with a lex γ ta R = 50 Ω to V_C Input edge rates 41 μ (21%) - 80%).

10. Duty cycle skew is measured between unerennal outputs using the deviations of the sum or Tpw- and Tpw+ & GHz

11. Device to device skew is measured between outputs under identical transition @ 1 GHz.

12. Additive RMS jitter with 50% duty cycle clock signal at 8 GHz & 10 GHz.

13. Additive peak-to-peak data dependent jitter with input NRZ data at PRBS 2²³-1.

14. V_{INPP} (MAX) cannot exceed V_{CC} - V_{EE}. Input voltage swing is a single-ended measurement operating in differential mode.

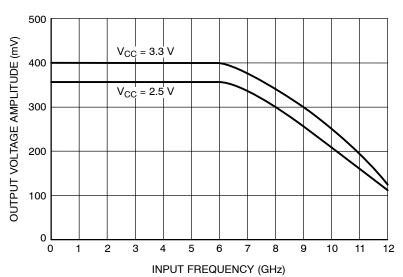


Figure 3. Output Voltage Amplitude (V_{OUTPP}) versus Input Clock Frequency (f_{in}) at Ambient Temperature (Typical) ($V_{INPP} = 400 \text{ mV}$)

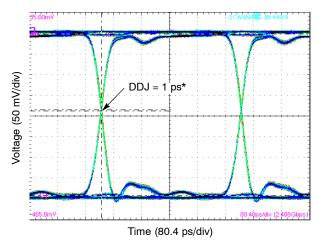


Figure 4. Typical Output Waveform at 2.488 Gb/s with PRBS 2²³-1 (V_{inpp} = 75 mV)

*Input signal DDJ = 6.4 ps

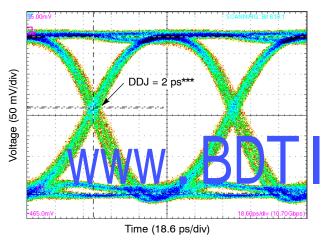


Figure 6. Typical Output Waveform at 10.7 Gb/s with PRBS 2^{23} -1 (V_{inpp} = 75 mV)

***Input signal DDJ = 11 ps

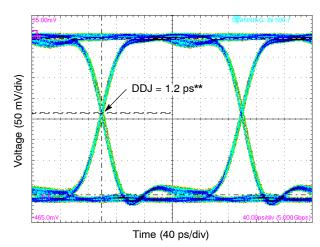


Figure 5. Typical Output Waveform at 5 Gb/s with PRBS 2²³-1 (V_{inpp} = 75 mV)

**Input signal DDJ = 7.2 ps

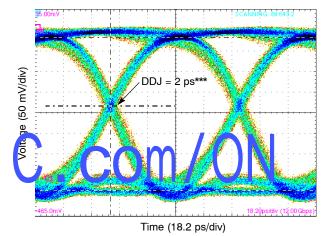


Figure 7. Typical Output Waveform at 12 Gb/s with PRBS 2^{23} -1 (V_{inpp} = 75 mV)

***Input signal DDJ = 13 ps

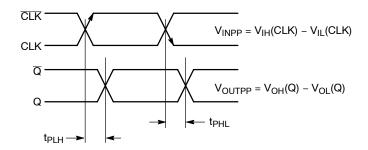


Figure 8. AC Reference Measurement

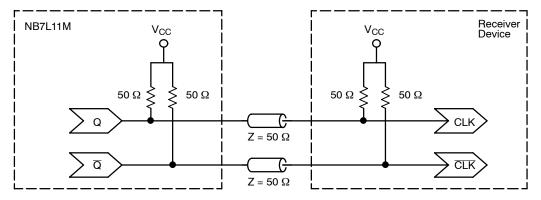


Figure 9. Typical Termination for Output Driver Using External Termination Resistor (Refer to Application Notes AND8020/D and AND8173/D)

www.BDTIC.com/ON

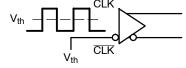


Figure 10. Differential Input Driven Single-Ended

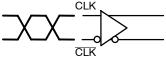


Figure 11. Differential Inputs Driven Differentially

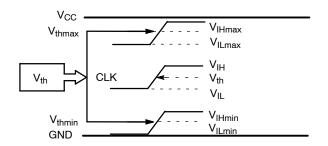


Figure 12. V_{th} Diagram

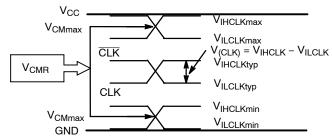


Figure 13. V_{CMR} Diagram

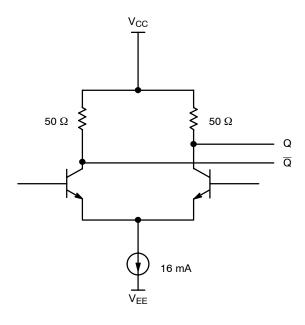


Figure 14. CML Output Structure

Table 6. INTERFACING OPTIONS

INTERFACING OPTIONS	CONNECTIONS		
CML	Connect V_{TCLK} , $\overline{V_{TCLK}}$ to V_{CC}		
LVDS	Connect V _{TCLK} , V _{TCLK} together CLK input		
AC-COUPLEA	Bias V_{TCL^k} $\overline{V_T}$ $\overline{ _{LK}}$ Inputs with n (V_{CL} R) C of nn or Mo de F ange		
RSECT, LYPECT V V	Standar ECLT min tion loc/inique. See AND 3020/L		
LVTTL, LVCMOS	An external voltage should be applied to the unused complementary differential input. Nominal voltage is 1.5 V for LVTTL and $V_{\text{CC}}/2$ for LVCMOS inputs.		

Application Information

All NB7L11M inputs can accept PECL, CML, LVTTL, LVCMOS and LVDS signal levels. The limitations for differential input signal (LVDS, PECL, or CML) are

minimum input swing of 75 mV and the maximum input swing of 2500 mV. Within these conditions, the input voltage can range from VCC to 1.2 V. Examples interfaces are illustrated below in a 50 Ω environment (Z = 50 Ω).

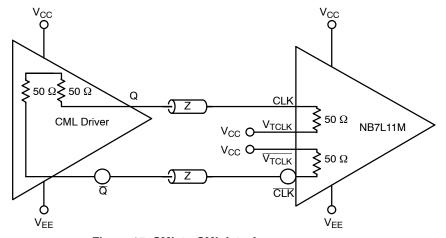


Figure 15. CML to CML Interface

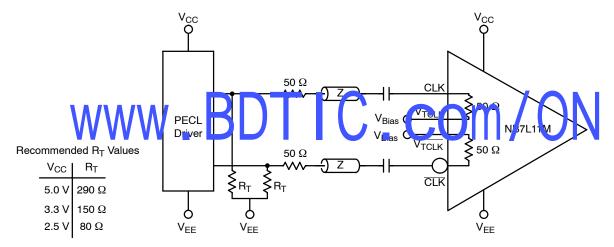


Figure 16. PECL to CML Receiver Interface

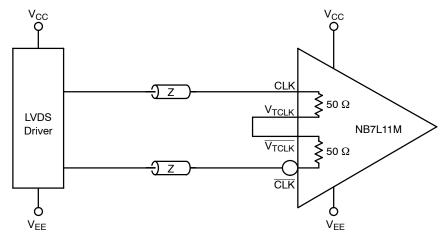


Figure 17. LVDS to CML Receiver Interface

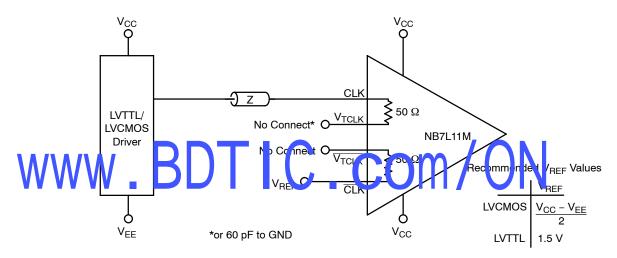
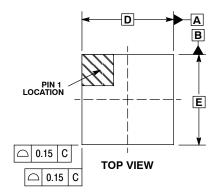
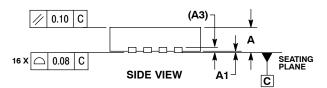


Figure 18. LVCMOS/LVTTL to CML Receiver Interface

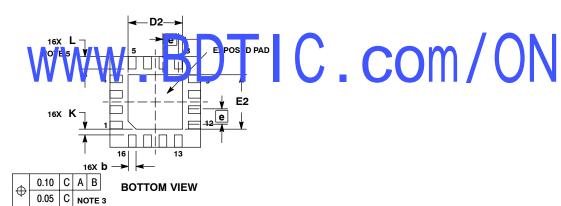

ORDERING INFORMATION


Device	Package	Shipping [†]		
NB7L11MMN	QFN-16	123 Units/Rail		
NB7L11MMNG	QFN-16 (Pb-Free)	123 Units/Rail		
NB7L11MMNR2	QFN-16	3000 Tape & Reel		
NB7L11MMNR2G	QFN-16 (Pb-Free)	3000 Tape & Reel		

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

16 PIN QFN **MN SUFFIX** CASE 485G-01 **ISSUE B**



NOTES

- DIMENSIONING AND TOLERANCING PER
- ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETERS.
 3. DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30 MM FROM TERMINAL. COPLANARITY APPLIES TO THE EXPOSED
- PAD AS WELL AS THE TERMINALS.

 Lmax CONDITION CAN NOT VIOLATE 0.2 MM
 MINIMUM SPACING BETWEEN LEAD TIP AND FLAG

	MILLIMETERS			
DIM	MIN	MAX		
Α	0.80	1.00		
A1	0.00	0.05		
А3	0.20 REF			
b	0.18 0.30			
D	3.00 BSC			
D2	1.65	1.85		
E	3.00 BSC			
E2	1.65	1.85		
е	0.50 BSC			
K	0.20			
L	0.30	0.50		

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082-1312 USA Phone: 480-829-7710 or 800-344-3860 Toll Free USA/Canada Fax: 480-829-7709 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative