NLAS5123

SPDT, $1 \mathbf{\Omega}$ Ron Switch

The NLAS5123 is a low R_{ON} SPDT analog switch. This device is designed for low operating voltage, high current switching of speaker output for cell phone applications. It can switch a balanced stereo output. The NLAS5123 can handle a balanced microphone/ speaker/ringtone generator in a monophone mode. The device contains a break-before-make (BBM) feature.

Features

- Single Supply Operation:
1.65 V to $5.5 \mathrm{~V}_{\mathrm{CC}}$
- Function Directly from LiON Battery
- R_{ON} Typical $=1.0 \Omega @ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$
- Low Static Power
- These are $\mathrm{Pb}-$ Free Devices

Typical Applications

- Cell Phone Speaker/Microphone Switching
- Ringtone-Chip/Amplifier Switching
- Stereo Balanced (Push-Pull) Switching

Important Information

- Continuous Current Rating Through

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

WDFN6 MN SUFFIX CASE 506AS

UDFN6 MU SUFFIX
CASE 517AA

W = Specific Device Code
M = Date Code \& Assembly Location

- = Pb-Free Device

(Top View)

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet.

Figure 1. Input Equivalent Circuit

PIN DESCRIPTION

Pin Name	Description
NC, NO, COM	Data Ports
IN	Control Input

TRUTH TABLE

Control Input	Function
L	NC Connected to COM
H	NO Connected to COM

H = HIGH Logic Level.
L = LOW Logic Level.

MAXIMUM RATINGS

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Defined as 10% ON, 90% off duty cycle.

RECOMMENDED OPERATING CONDITIONS

Symbol	Rating	Min	Max	Unit	
V_{CC}	Positive DC Supply Voltage	1.65	5.5	V	
$\mathrm{~V}_{\mathrm{IS}}$	Analog Input Voltage (NC, NO, COM)	0	$\mathrm{~V}_{\mathrm{CC}}$	V	
V_{IN}	Digital Select Input Voltage (IN)	0	$\mathrm{~V}_{\mathrm{CC}}$	V	
T_{A}	Operating Temperature Range		-40	85	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Rise or Fall Time, SELECT	$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$		20	$\mathrm{~ns} / \mathrm{V}$
		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$		10	

DC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test Conditions	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
				Min	Typ	Max	Min	Max	
V_{IH}	HIGH Level Input Voltage		$\begin{aligned} & 2.7 \\ & 4.5 \end{aligned}$				$\begin{aligned} & 2.0 \\ & 2.4 \end{aligned}$		V
VIL	LOW Level Input Voltage		$\begin{aligned} & 2.7 \\ & 4.5 \end{aligned}$					$\begin{aligned} & 0.6 \\ & 0.8 \end{aligned}$	V
I_{N}	Input Leakage Current	$0 \leq \mathrm{V}_{\text {IN }} \leq 5.5 \mathrm{~V}$	0-5.5			± 0.1		± 1	$\mu \mathrm{A}$
IofF	OFF State Leakage Current (Note 7)	$0 \leq \mathrm{NO}, \mathrm{NC}, \mathrm{COM} \leq \mathrm{V}_{\mathrm{CC}}$	5.5	-2.0		+2.0		± 20	nA
ION	ON State Leakage Current (Note 7)	$0 \leq \mathrm{NO}, \mathrm{NC}, \mathrm{COM} \leq \mathrm{V}_{\mathrm{CC}}$	5.5	-4.0		+4.0		± 40	nA
R_{ON}	Switch On Resistance (Note 2)	$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}, \\ & \mathrm{~V}_{\text {IS }}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$	2.7			1.7		2.0	Ω
		$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}, \\ & \mathrm{~V}_{\text {IS }}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$	4.5			1.0		1.2	
I_{CC}	Quiescent Supply Current All Channels ON or OFF	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND, I ${ }_{\text {IOUT }}=0$	5.5			0.5		1.0	$\mu \mathrm{A}$

Analog Signal Range

$\Delta \mathrm{R}_{\text {ON }}$	On Resistance Match Between Channels (Notes 2, 3, 4)	$\begin{aligned} & I_{\mathrm{A}}=100 \mathrm{~mA}, \\ & \mathrm{~V}_{1 S}=1.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{A}}=100 \mathrm{~mA}, \\ & \mathrm{~V}_{I S}=2.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2.7 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 0.15 \\ & 0.12 \end{aligned}$		0.15	Ω
$\mathrm{R}_{\text {flat }}$	On Resistance Flatness (Notes 2, 3, 5)	$\begin{aligned} & \mathrm{I}_{\mathrm{A}}=100 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{IS}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{IA}=100 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IS}}=0 \mathrm{~V} \mathrm{~V} \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & 2.7 \\ & 4.5 \end{aligned}$	$\begin{aligned} & \hline 0.4 \\ & 0.3 \end{aligned}$		0.4	Ω

2. Measured by the
the lower of the voltages on the two (NO, NC, COINI). the lower of the voltages on the two (NO, NU, COI).
3. Parameter is characterized but not tested in production.
4. $\Delta \mathrm{R}_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ON}} \max -\mathrm{R}_{\mathrm{ON}}$ min measured at identical V_{CC}, temperature and voltage levels.
5. Flatness is defined as the difference between the maximum and minimum value of On Resistance over the specified range of conditions.
6. Guaranteed by Design.
7. This parameter is guaranteed by design but not tested. The bus switch contributes no propagation delay other than the RC delay of the On Resistance of the switch and the 50 pF load capacitance, when driven by an ideal voltage source (zero output impedance).

AC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test Conditions	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit	Figure \#
				Min	Typ	Max	Min	Max		
$t_{\text {PHL }}$ $t_{\text {PLH }}$	Propagation Delay Bus-to-Bus (Note 9)	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\text {IL }}$	$\begin{aligned} & 2.7 \\ & 4.5 \end{aligned}$			$\begin{aligned} & 2.0 \\ & 0.3 \end{aligned}$			ns	
t_{ON}	Output Enable Time Turn On Time (COM to NO or NC)	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{IS}}=1.5 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{IS}}=3.0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{aligned}$	$\begin{aligned} & 2.7 \\ & 4.5 \end{aligned}$			$\begin{aligned} & 30 \\ & 20 \end{aligned}$		$\begin{aligned} & 35 \\ & 25 \end{aligned}$	ns	3, 4
toff	Output Disable Time Turn Off Time (COM to NO, NC)	$\begin{aligned} & \mathrm{V}_{\mathrm{IS}}=1.5 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{IS}}=3.0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{aligned}$	$\begin{aligned} & 2.7 \\ & 4.5 \end{aligned}$			$\begin{aligned} & 20 \\ & 15 \end{aligned}$		$\begin{aligned} & 25 \\ & 20 \end{aligned}$	ns	3, 4
$\mathrm{t}_{\text {BBM }}$	Break Before Make Time (Note 8)	$\begin{aligned} & \mathrm{V}_{1 \mathrm{~S}}=1.5 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{aligned}$	$\begin{aligned} & 2.7 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$		ns	2
Q	Charge Injection (Note 8)	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}, \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{GEN}}=0 \Omega \end{aligned}$	$\begin{aligned} & 2.7 \\ & 4.5 \end{aligned}$		$\begin{aligned} & 26 \\ & 48 \end{aligned}$				pC	6
OIRR	Off Isolation (Note 10)	$\begin{aligned} & R_{L}=50 \Omega \\ & \mathrm{f}=1.0 \mathrm{MHz} \end{aligned}$	$\begin{gathered} 2.7- \\ 5.5 \end{gathered}$		-62				dB	5
$\mathrm{X}_{\text {talk }}$	Crosstalk	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega \\ & \mathrm{f}=1.0 \mathrm{MHz} \end{aligned}$	$\begin{gathered} 2.7- \\ 5.5 \end{gathered}$		-70				dB	7
BW	-3 dB Bandwidth	$\mathrm{R}_{\mathrm{L}}=50 \Omega$	$\begin{gathered} \hline 2.7- \\ 5.5 \end{gathered}$		55				MHz	8
THD	Total Harmonic Distortion (Note 8)	$\begin{aligned} & \hline \mathrm{R}_{\mathrm{L}}=600 \Omega \\ & 0.5 \mathrm{~V}-\mathrm{P} \\ & \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} \end{aligned}$	$\begin{gathered} 2.7- \\ 5.5 \end{gathered}$		0.012				\%	9

CAPACITANCE (Note 11)

Symbol	Parameter	Test Conditions	Typ	Max	Unit
C_{IN}	Select Pin Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	2.0		pF
$\mathrm{C}_{\mathrm{NC} / \mathrm{NO}}$	NC, NO Port Off Capacitance	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	20		pF
$\mathrm{C}_{\mathrm{COM}}$	COM Port Capacitance when Switch is Enabled	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	55		pF

11. $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$, Capacitance is characterized but not tested in production.

NLAS5123

Figure 2. t_{BB} (Time Break-Before-Make)

Figure 4. $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}}$

Channel switch control/s test socket is normalized. Off isolation is measured across an off channel. On loss is the bandwidth of an On switch. $\mathrm{V}_{\text {ISO }}$, Bandwidth and $\mathrm{V}_{\text {ONL }}$ are independent of the input signal direction.
$\mathrm{V}_{\text {ISO }}=$ Off Channel Isolation $=20 \log \left(\frac{\mathrm{~V}_{\text {OUT }}}{\mathrm{V}_{\text {IN }}}\right)$ for $\mathrm{V}_{\text {IN }}$ at 100 kHz
$\mathrm{V}_{\text {ONL }}=$ On Channel Loss $=20 \log \left(\frac{\mathrm{~V}_{\text {OUT }}}{\mathrm{V}_{\text {IN }}}\right)$ for $\mathrm{V}_{\text {IN }}$ at 100 kHz to 50 MHz
Bandwidth (BW) = the frequency 3 dB below $\mathrm{V}_{\mathrm{ONL}}$
$\mathrm{V}_{\mathrm{CT}}=$ Use $\mathrm{V}_{\text {ISO }}$ setup and test to all other switch analog input/outputs terminated with 50Ω

Figure 5. Off Channel Isolation/On Channel Loss (BW)/Crosstalk (On Channel to Off Channel)/V ${ }_{\text {ONL }}$

Figure 6. Charge Injection: (Q)

Figure 7. Cross Talk vs. Frequency $@ V_{c c}=4.5 \mathrm{~V}$

FREQUENCY (MHz)
Figure 8. Bandwidth vs. Frequency

Figure 9. Total Harmonic Distortion

Figure 10. On-Resistance vs. Input Voltage @ $\mathrm{V}_{\mathrm{Cc}}=2.7 \mathrm{~V}$

Figure 11. On-Resistance vs. Input Voltage @ $\mathrm{V}_{\mathrm{Cc}}=4.5 \mathrm{~V}$

Figure 12. On-Resistance vs. Input Voltage

DEVICE ORDERING INFORMATION

Device Order Number	Device Nomenclature					Package Type	Tape \& Reel Size ${ }^{\dagger}$
	Circuit Indicator	Technology	Device Function	Package Suffix	Tape \& Reel Suffix		
NLAS5123MNR2G	NL	AS	5123	MN	2	WDFN6 (Pb-Free)	3000 / Tape \& Reel
NLAS5123MUR2G	NL	AS	5123	MU	2	UDFN6 ($\mathrm{Pb}-\mathrm{Free}$)	3000 / Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
wuw. BDTI C. com/ON

PACKAGE DIMENSIONS

UDFN6, $1.2 \times 1.0,0.4 \mathrm{P}$
CASE 517AA-01
ISSUE C

PACKAGE DIMENSIONS

[^0]
PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support: Phone: 421337902910
Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

[^0]: ON Semiconductor and ON are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

