NLAS7242

High-Speed USB 2.0 (480 Mbps) DPDT Switches

The NLAS7242 is a DPDT switch optimized for high-speed USB 2.0 applications within portable systems. It features ultra-low on capacitance, $\mathrm{C}_{\mathrm{ON}}=7.5 \mathrm{pF}$ (typ), and a bandwidth above 900 MHz . It is optimized for applications that use a single USB interface connector to route multiple signal types. The C_{ON} and R_{ON} of both channels are suitably low to allow the NLAS7242 to pass any speed USB data or audio signals going to a moderately resistive terminal such as an external headset. The device is offered in a UQFN10 $1.4 \mathrm{~mm} \times 1.8 \mathrm{~mm}$ package.

Features

- Optimized Flow-Through Pinout
- $\mathrm{R}_{\mathrm{ON}}: 7.5 \Omega$ Typ $@ \mathrm{~V}_{\mathrm{CC}}=4.2 \mathrm{~V}$
- C_{ON} : 7.5 pF Typ @ $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$
- V ${ }_{\text {CC }}$ Range: 1.65 V to 4.5 V
- Typical Bandwidth: 900 MHz
- $1.4 \mathrm{~mm} \times 1.8 \mathrm{~mm} \times 0.50 \mathrm{~mm}$ UQFN10
- OVT on Common Signal Pins D+/D- up to 5.25 V
- 8 kV ESD Protection on D+/D- to GND

Typical Applicatic This is a Pb-Free Device

- High Speed USB 2.0 Data
- Mobile Phones
- Portable Devices

Figure 1. Application Diagram

ON Semiconductor ${ }^{\text {® }}$
http://onsemi.com

MARKING
DIAGRAM

UQFN10
CASE 488AT

AD	$=$ Device Code
\bar{M}	$=$ Date Code
-	$=$ Pb-Free Device

(Note: Microdot may be in either location)

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

NLAS7242

Figure 2. Pin Connections and Logic Diagram
(Top View)

Table 1. PIN DESCRIPTION

Pin	Function
S	Control Input
$\overline{\mathrm{OE}}$	Output Enable
HSD1+, HSD1-, HSD2+, HSD2--, D+, D-	Data Ports

Table 2. TRUTH TABLE

OE	\mathbf{S}	HSD1+, HSD1-	HSD2+, HSD2-
1	X	OFF	OFF
0	0	ON	OFF
0	1	OFF	ON

MAXIMUM RATINGS

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Symbol	Pins	Parameter	Min	Max	Unit
$\mathrm{V}_{\text {CC }}$		Positive DC Supply Voltage	1.65	4.5	V
$\mathrm{V}_{\text {IS }}$	HSDn+, HSDn-	Analog Signal Voltage	GND	$\mathrm{V}_{\text {CC }}$	V
	D+, D-		GND	4.5	

Minimum and maximum values are guaranteed through test or design across the Recommended Operating Conditions, where applicable. Typical values are listed for guidance only and are based on the particular conditions listed for section, where applicable. These conditions are valid for all values found in the characteristics tables unless otherwise specified in the test conditions.

RECOMMENDED OPERATING CONDITIONS

Symbol	Pins	Parameter	Min	Max	Unit
V_{IN}	S	Control Input Voltage	GND	V_{CC}	V
T_{A}		Operating Temperature	-40	+85	${ }^{\circ} \mathrm{C}$

Minimum and maximum values are guaranteed through test or design across the Recommended Operating Conditions, where applicable. Typical values are listed for guidance only and are based on the particular conditions listed for section, where applicable. These conditions are valid for all values found in the characteristics tables unless otherwise specified in the test conditions.

ESD PROTECTION

Symbol	Parameter	Value	Unit
ESD	Human Body Model - All Pins	3.0	kV

DC ELECTRICAL CHARACTERISTICS

CONTROL INPUT VOLTAGE (Typical: $\mathrm{T}=25^{\circ} \mathrm{C}$)

Symbol	Pins	Parameter	Test Conditions	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
					Min	Typ	Max	
V_{IH}	S	Control Input HIGH Voltage (See Figure 11)		2.7 3.3 4.2	1.25 1.25 1.25	-	-	V
V_{IL}	S	Control Input LOW Voltage (See Figure 11)		$\begin{aligned} & 2.7 \\ & 3.3 \\ & 4.2 \end{aligned}$	-	-	$\begin{aligned} & 0.4 \\ & 0.4 \\ & 0.5 \end{aligned}$	V
I_{IN}	S	Current Input Leakage Current	$0 \leq \mathrm{V}_{\text {IS }} \leq \mathrm{V}_{\text {CC }}$	1.65-4.5	-	-	± 1.0	$\mu \mathrm{A}$
Symbol	Pins	Parameter	Test Conditions	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
					Min	Typ	Max	
ICC	V_{CC}	Quiescent Supply Current	$\mathrm{V}_{\text {IS }}=\mathrm{V}_{\mathrm{CC}}$ or GND ; $\mathrm{I}_{\mathrm{D}}=0 \mathrm{~A}$	1.65-4.5	-	-	1.0	$\mu \mathrm{A}$
I_{Oz}		OFF State Leakage	$0 \leq \mathrm{V}_{\text {IS }} \leq \mathrm{V}_{\text {CC }}$	1.65-4.5	-	± 0.1	± 1.0	$\mu \mathrm{A}$
IofF	D+, D-	Power OFF Leakage Current	$0 \leq \mathrm{V}_{\text {IS }} \leq \mathrm{V}_{\text {CC }}$	0	-	-	± 1.0	$\mu \mathrm{A}$

LIMITED $\mathrm{V}_{\text {IS }}$ SWING ON RESISTANCE (Typical: $\mathrm{T}=25^{\circ} \mathrm{C}$)

Symbol	Pins	Parameter	Test Conditions	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
					Min	Typ	Max	
RON		On-Resistance	$\begin{aligned} & \mathrm{I} \mathrm{ON}=8 \mathrm{~mA} \\ & \mathrm{~V} \text { IS }=0 \mathrm{~V} \text { to } 0.4 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2.7 \\ & 3.3 \\ & 4.2 \end{aligned}$	-	6.0 6.0 5.5	-	Ω
RFLAT		On-Resistance Flatness	$\begin{aligned} & \mathrm{ION}=8 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IS}}=0 \mathrm{~V} \text { to } 0.4 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2.7 \\ & 3.3 \\ & 4.2 \end{aligned}$	-	$\begin{aligned} & \hline 0.35 \\ & 0.35 \\ & 0.20 \end{aligned}$	-	Ω
$\Delta \mathrm{R}_{\text {ON }}$		On-Resistance Matching	$\begin{aligned} & \mathrm{I}_{\mathrm{ON}}=8 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IS}}=0 \mathrm{~V} \text { to } 0.4 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2.7 \\ & 3.3 \\ & 4.2 \end{aligned}$	-	$\begin{aligned} & \hline 0.8 \\ & 0.7 \\ & 0.5 \end{aligned}$	-	Ω

FULL $\mathrm{V}_{\text {IS }}$ SWING ON RESISTANCE (Typical: $\mathrm{T}=25^{\circ} \mathrm{C}$)

Symbol	Pins	Parameter	Test Conditions	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
					Min	Typ	Max	
RON		On-Resistance	$\begin{aligned} & \mathrm{I}_{\mathrm{ON}}=8 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IS}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & 2.7 \\ & 3.3 \\ & 4.2 \end{aligned}$	-	$\begin{aligned} & 9.3 \\ & 8.7 \\ & 7.5 \end{aligned}$	-	Ω
$\mathrm{R}_{\text {FLAT }}$		On-Resistance Flatness	$\begin{aligned} & \mathrm{I}_{\mathrm{ON}}=8 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IS}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & \hline 2.7 \\ & 3.3 \\ & 4.2 \end{aligned}$	-	$\begin{aligned} & \hline 3.6 \\ & 3.3 \\ & 2.9 \end{aligned}$	-	Ω
$\Delta \mathrm{R}_{\text {ON }}$		On-Resistance	$\begin{aligned} & \mathrm{I}_{\mathrm{ON}}=8 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IS}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & 2.7 \\ & 3.3 \\ & 4.2 \end{aligned}$	-	$\begin{aligned} & \hline 0.8 \\ & 0.7 \\ & 0.5 \end{aligned}$	-	Ω

uww. BDTI C. com/OA

AC ELECTRICAL CHARACTERISTICS

TIMING/FREQUENCY (Typical: $\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$)

Symbol	Pins	Parameter	Test Conditions	$\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
					Min	Typ	Max	
ton	Closed to Open	Turn-ON Time (See Figures 4 and 5)		1.65-4.5	-	13.0	30.0	ns
tofF	Open to Closed	Turn-OFF Time (See Figures 4 and 5)		1.65-4.5	-	12.0	25.0	ns
TBBM		Break-Before-Make Time (See Figure 3)		1.65-4.5	2.0	-	-	ns
BW		-3 dB Bandwidth	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$	1.65-4.5	-	900	-	MHz

ISOLATION (Typical: $\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$)

Symbol	Pins	Parameter	Test Conditions	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
					Min	Typ	Max	
$\mathrm{O}_{\text {IRR }}$	Open	OFF-Isolation (See Figure 6)	$\mathrm{f}=240 \mathrm{MHz}$	1.65-4.5	-	-21	-	dB
$\mathrm{X}_{\text {TALK }}$	$\begin{array}{\|c} \hline \text { HSD+ to } \\ \text { HSD- } \end{array}$	Non-Adjacent Channel Crosstalk	$\mathrm{f}=240 \mathrm{MHz}$	1.65-4.5	-	-21	-	dB

CAPACITANCE (Typical: $\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$)

Symbol	Pins	Parameter	Test Conditions	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
				Min	Typ	Max	
$\mathrm{C}_{\text {IN }}$	$\overline{\mathrm{OE}}$		Mcc=0 $\square_{\text {- }}=1 \mathrm{MHz}$		L	-	pF
$\mathrm{CoN}^{\text {a }}$	$\begin{gathered} \text { HSD+ } \\ \text { D+ } \end{gathered}$		$\begin{aligned} & \mathrm{VC}=3.0 \mathrm{VE}=\mathrm{V}, \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$			-	
		MS + , HoD-Cow Capacimatuo	$\begin{aligned} & V_{\mathrm{cc}}=3.3 \mathrm{~V} ; \overline{\mathrm{OE}=0 \mathrm{~V},} \\ & \mathrm{f}=10 \mathrm{MHz} \end{aligned}$	-	6.5	-	
$\mathrm{C}_{\text {OFF }}$	D+, D-	HSD+, HSD- OFF Capacitance	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{IS}}=3.3 \mathrm{~V} ; \\ & \mathrm{OE}=3.3 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	-	3.8	-	
			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{IS}}=3.3 \mathrm{~V} ; \\ & \mathrm{OE}=3.3 \mathrm{~V}, \mathrm{f}=10 \mathrm{MHz} \end{aligned}$	-	2.0	-	

Figure 3. t_{BB} (Time Break-Before-Make)

Figure 5. $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}}$

Channel switch control/s test socket is normalized. Off isolation is measured across an off channel. On loss is the bandwidth of an On switch. $\mathrm{V}_{\text {ISO }}$, Bandwidth and $\mathrm{V}_{\text {ONL }}$ are independent of the input signal direction.
$\mathrm{V}_{\text {ISO }}=$ Off Channel Isolation $=20 \log \left(\frac{\mathrm{~V}_{\mathrm{OUT}}}{\mathrm{V}_{\text {IN }}}\right)$ for $\mathrm{V}_{\text {IN }}$ at 100 kHz
$\mathrm{V}_{\mathrm{ONL}}=$ On Channel Loss $=20 \log \left(\frac{\mathrm{~V}_{\mathrm{OUT}}}{\mathrm{V}_{\mathrm{IN}}}\right)$ for V_{IN} at 100 kHz to 50 MHz
Bandwidth $(B W)=$ the frequency 3 dB below $\mathrm{V}_{\mathrm{ONL}}$
$\mathrm{V}_{\mathrm{CT}}=$ Use $\mathrm{V}_{\text {ISO }}$ setup and test to all other switch analog input/outputs terminated with 50Ω

Figure 6. Off Channel Isolation/On Channel Loss (BW)/Crosstalk (On Channel to Off Channel)/ $V_{\text {ONL }}$

DETAILED DESCRIPTION

High Speed (480Mbps) USB 2.0 Optimized

The NLAS7242 is a DPDT switch designed for USB applications within portable systems. Th Kg ant DN (f
 high speed data communication. The NLAS7242 switch can be used to switch between high speed (480 Mbps) USB signals and a variety of audio or data signals such as full speed USB, UART or even a moderately resistive audio terminal.

Over Voltage Tolerant

The NLAS7242 features over voltage tolerant I/O prection on the common sicha ph $\mathrm{D}+/ \mathrm{D}-$. This allows the swito to i ter a e c re yy vith USB connector. The D $/$ D- pmoscanitastand a sho $\mathrm{H}_{\mathrm{D}} \mathrm{V}_{\mathrm{BUS}}$, up to 5.25 V , continuous DC current for up to 24 hours as specified in the USB 2.0 specification. This protection is achieved without the need for any external resistors or protection devices.

NLAS7242

Figure 8. Signal Quality

Figure 9. Near End Eye Diagram

Near End Test Data:					Min	Max
Std.	Consecutive jitter range	-61.64	113.30	ps	-200 ps	+200 ps
	Paired JK jitter range	-58.36	46.47	ps		
	Paired KJ jitter range	-62.00	81.30	ps		
NO	Consecutive jitter range	-66.69	69.37	ps	-200 ps	+200 ps
	Paired JK jitter range	-74.71	60.06	ps		
	Paired KJ jitter range	-58.86	70.90	ps		

Figure 10. Bandwidth vs. Frequency

Figure 11. ICC Leakage Current vs. V_{IN} Voltage

PACKAGE DIMENSIONS

UQFN10 1.4x1.8, 0.4P

CASE 488AT-01

ISSUE A

DETAIL A Bottom View (Optional)

OTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS
3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30 MM FROM TERMINAL
4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

	MILLIMETERS	
DIM	MIN	MAX
A	0.45	0.60
A1	0.00	0.05
A3	0.127 REF	
b	0.15	
D	0.25	
E	1.80	
BSC		
e	0.40	
BSC		
L1	0.30	0.50
L3	0.00	0.15

DETAIL B MOUNTING FOOTPRINT*
Side View
Optional)

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

[^0]
PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support: Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

[^0]: ON Semiconductor and 0 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/ Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner

