NLASB3157

SPDT, $\mathbf{3} \mathbf{\Omega}$ Ron Switch

The NLASB3157 is an advanced CMOS analog switch fabricated with silicon gate CMOS technology. It achieves very low propagation delay and $\mathrm{RDS}_{\mathrm{ON}}$ resistances while maintaining CMOS low power dissipation. Analog and digital voltages that may vary across the full power-supply range (from V_{CC} to GND). This device is a drop in replacement for the NC7SB3157.

The select pin has overvoltage protection that allows voltages above V_{CC}, up to 7.0 V to be present on the pin without damage or disruption of operation of the part, regardless of the operating voltage.

Features

- High Speed: $\mathrm{t}_{\mathrm{PD}}=1.0 \mathrm{~ns}(\mathrm{Typ})$ at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
- Low Power Dissipation: $\mathrm{I}_{\mathrm{CC}}=2.0 \mu \mathrm{~A}(\mathrm{Max})$ at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Standard CMOS Logic Levels
- High Bandwidth, Improved Linearity
- Switches Standard NTSC/PAL Video, Audio, SPDIF and HDTV
- May be used for Clock Switching, Data Multiplexing, etc.
- R_{ON} Typical $=3 \Omega @ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$
- Break Before Make Circuitry, Prevents Inadvertent Shorts

- Latchup Perfor a el E c eo 200 n
- Tiny SC88 and WDFN6 Packages
- ESD Performance:
- Human Body Model; > 2000 V;
- Machine Model; > 200 V
- Extended Automotive Temperature Range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (See Appendix)
- Pb-Free Packages are Available

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

ORDERING INFORMATION

Device	Package	Shipping †
NLASB3157DFT2	SC-88	3000 Tape \& Reel
NLASB3157DFT2G	SC-88 (Pb-Free)	3000 Tape \& Reel
NLASB3157MTR2G	WDFN6 (Pb-Free)	3000 Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Figure 1. Pin Assignment \& Logic Diagram
MAXIMUM RATINGS

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

RECOMMENDED OPERATING CONDITIONS (Note 2)

Characteristic	Symbol	Min	Max	Unit
Supply Voltage Operating	V_{CC}	1.65	5.5	V
Select Input Voltage	$\mathrm{V}_{\text {IN }}$	0	5.5	V
Switch Input Voltage	$\mathrm{V}_{\text {IS }}$	0	$\mathrm{~V}_{\mathrm{CC}}$	V
Output Voltage	$\mathrm{V}_{\mathrm{OUT}}$	0	$\mathrm{~V}_{\mathrm{CC}}$	V
Operating Temperature	T_{A}	-55	+125	${ }^{\circ} \mathrm{C}$
Input Rise and Fall Time Control Input $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}-3.6 \mathrm{~V}$ Control Input $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}-5.5 \mathrm{~V}$	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$		0	10
Thermal Resistance		0	$\mathrm{~ns} / \mathrm{V}$	
5.0				

2. Select input must be held HIGH or LOW, it must not float.

DC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test Conditions	$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}} \\ & \text { (V) } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
				Min	Typ	Max	Min	Max	
V_{IH}	HIGH Level Input Voltage		$\begin{gathered} 1.65-1.95 \\ 2.3-5.5 \end{gathered}$				$\begin{aligned} & 0.75 \mathrm{~V}_{\mathrm{cc}} \\ & 0.7 \mathrm{~V} \mathrm{Cc} \end{aligned}$		V
V_{IL}	LOW Level Input Voltage		$\begin{gathered} 1.65-1.95 \\ 2.3-5.5 \end{gathered}$					$0.25 \mathrm{~V}_{\mathrm{CC}}$ 0.3 VCC	V
In	Input Leakage Current	$0 \leq \mathrm{V}_{\mathrm{IN}} \leq 5.5 \mathrm{~V}$	0-5.5		± 0.05	± 0.1		± 1	$\mu \mathrm{A}$
loff	OFF State Leakage Current	$0 \leq A, B \leq V_{C C}$	1.65-5.5		± 0.05	± 0.1		± 1	$\mu \mathrm{A}$
$\mathrm{R}_{\text {ON }}$	Switch On Resistance (Note 3)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=30 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-30 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-30 \mathrm{~mA} \end{aligned}$	4.5		$\begin{aligned} & 3.0 \\ & 5.0 \\ & 7.0 \end{aligned}$			$\begin{aligned} & 7.0 \\ & 12 \\ & 15 \end{aligned}$	Ω
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=24 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-24 \mathrm{~mA} \end{aligned}$	3.0		$\begin{gathered} 4.0 \\ 10 \end{gathered}$			$\begin{aligned} & 9.0 \\ & 20 \end{aligned}$	Ω
		$\begin{aligned} & \begin{array}{l} \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=8 \mathrm{~mA} \\ \mathrm{~V}_{\mathrm{IN}}=2.3 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-8 \mathrm{~mA} \end{array} \end{aligned}$	2.3		$\begin{aligned} & \hline 5.0 \\ & 13 \end{aligned}$			$\begin{aligned} & 12 \\ & 30 \end{aligned}$	Ω
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=4 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=1.65 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-4 \mathrm{~mA} \end{aligned}$	1.65		$\begin{aligned} & \hline 6.5 \\ & 17 \end{aligned}$			$\begin{aligned} & 20 \\ & 50 \end{aligned}$	Ω
$I_{\text {cc }}$	Quiescent Supply Current All Channels ON or OFF	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{l}_{\mathrm{OUT}}=0 \end{aligned}$	5.5			1.0		10	$\mu \mathrm{A}$
	Analog Signal Range		V_{Cc}	0		$\mathrm{V}_{\text {cc }}$	0	V_{Cc}	V
R RANGE	On Resistance Over Signal Range (Note 3	$\begin{aligned} & \begin{array}{l} I_{A}=-30 \mathrm{~mA}, 0 \leq \mathrm{V}_{\mathrm{Bn}} \\ \leq \mathrm{V}_{\mathrm{CC}} \\ \mathrm{I}_{\mathrm{A}}-24 \mathrm{r} \\ =\mathrm{V}_{\mathrm{Bn}} \\ \mathrm{I}_{\mathrm{A}}=-8 \mathrm{~mA}, 0 \leq \mathrm{V}_{\mathrm{Bn}} \\ \leq \mathrm{V}_{\mathrm{CC}} \\ \mathrm{I}_{\mathrm{A}}=-4 \mathrm{~mA}, 0 \leq \mathrm{V}_{\mathrm{Bn}} \\ \leq \mathrm{V}_{\mathrm{CC}} \end{array} \end{aligned}$	$\begin{gathered} \hline 4.5 \\ 3.0 \\ 2.3 \\ 1.65 \end{gathered}$					$\begin{aligned} & \hline 25 \\ & 50 \\ & 100 \\ & 300 \end{aligned}$	Ω
$\Delta \mathrm{R}_{\text {ON }}$	On Resistance Match Between Channels (Note 3) (Note 4) (Note 5)	$\begin{aligned} & \mathrm{I}_{\mathrm{A}}=-30 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Bn}}=3.15 \\ & \mathrm{I}_{\mathrm{A}}=-24 \mathrm{~mA}, V_{\mathrm{Bn}}=2.1 \\ & \mathrm{I}_{\mathrm{A}}=-8 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Bn}}=1.6 \\ & \mathrm{I}_{\mathrm{A}}=-4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Bn}}=1.15 \end{aligned}$	$\begin{gathered} \hline 4.5 \\ 3.0 \\ 2.3 \\ 1.65 \end{gathered}$		$\begin{gathered} \hline 0.15 \\ 0.2 \\ 0.5 \\ 0.5 \end{gathered}$				Ω
$\mathrm{R}_{\text {flat }}$	On Resistance Flatness (Note 3) (Note 4) (Note 6)	$\begin{aligned} & \mathrm{I}_{\mathrm{A}}=-30 \mathrm{~mA}, 0 \leq \mathrm{V}_{\mathrm{Bn}} \\ & \leq \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{I}_{\mathrm{A}}=-24 \mathrm{~mA}, 0 \leq \mathrm{V}_{\mathrm{Bn}} \\ & \leq \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{I}_{\mathrm{A}}=-8 \mathrm{~mA}, 0 \leq \mathrm{V}_{\mathrm{Bn}} \\ & \leq \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{I}_{\mathrm{A}}=-4 \mathrm{~mA}, 0 \leq \mathrm{V}_{\mathrm{Bn}} \\ & \leq \mathrm{V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & 5.0 \\ & 3.3 \\ & 2.5 \\ & 1.8 \end{aligned}$		6.0 12 28 125				Ω

3. Measured by the voltage drop between A and B pins at the indicated current through the switch. On Resistance is determined by the lower of the voltages on the two (A or B Ports).
4. Parameter is characterized but not tested in production.
5. $\Delta R_{O N}=R_{O N} \max -R_{\text {ON }}$ min measured at identical V_{CC}, temperature and voltage levels.
6. Flatness is defined as the difference between the maximum and minimum value of On Resistance over the specified range of conditions.
7. Guaranteed by Design.

AC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test Conditions	v_{cc}(V)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit	Figure Number
				Min	Typ	Max	Min	Max		
tphL tpLH	Propagation Delay Bus to Bus (Note 9)	$\mathrm{V}_{1}=$ OPEN	$\begin{gathered} \hline 1.65-1.95 \\ 2.3-2.7 \\ 3.0-3.6 \\ 4.5-5.5 \end{gathered}$					$\begin{aligned} & 1.2 \\ & 0.8 \\ & 0.3 \end{aligned}$	ns	$\begin{gathered} \text { Figures } \\ 2,3 \end{gathered}$
$t_{\text {PZL }}$ $t_{\text {PZH }}$	Output Enable Time Turn On Time (A to B_{n})	$\begin{aligned} & V_{\mathrm{I}}=2 \times \mathrm{V}_{\mathrm{CC}} \text { for } \mathrm{t}_{\text {PZL }} \\ & \mathrm{V}_{\mathrm{I}}=0 \mathrm{~V} \text { for } t_{\text {PZZ }} \end{aligned}$	$\begin{gathered} \hline 1.65-1.95 \\ 2.3-2.7 \\ 3.0-3.6 \\ 4.5-5.5 \end{gathered}$			$\begin{aligned} & 23 \\ & 13 \\ & 6.9 \\ & 5.2 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 3.5 \\ & 2.5 \\ & 1.7 \end{aligned}$	$\begin{aligned} & 24 \\ & 14 \\ & 7.6 \\ & 5.7 \end{aligned}$	ns	$\begin{gathered} \hline \text { Figures } \\ 2,3 \end{gathered}$
$\begin{array}{\|l\|l} \hline \text { tPLZ } \\ t_{\text {PHZ }} \end{array}$	Output Disable Time Turn Off Time (A Port to B Port)	$\begin{aligned} & V_{1}=2 \times V_{C C} \text { for tpLZ } \\ & V_{I}=0 V \text { for tPHZ } \end{aligned}$	$\begin{gathered} \hline 1.65-1.95 \\ 2.3-2.7 \\ 3.0-3.6 \\ 4.5-5.5 \end{gathered}$			$\begin{gathered} 12.5 \\ 7.0 \\ 5.0 \\ 3.5 \end{gathered}$	$\begin{aligned} & 3.0 \\ & 2.0 \\ & 1.5 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 13 \\ & 7.5 \\ & 5.3 \\ & 3.8 \end{aligned}$	ns	Figures 2, 3
$\mathrm{t}_{\mathrm{B}-\mathrm{M}}$	Break Before Make Time (Note 8)		$\begin{gathered} \hline 1.65-1.95 \\ 2.3-2.7 \\ 3.0-3.6 \\ 4.5-5.5 \end{gathered}$				$\begin{aligned} & \hline 0.5 \\ & 0.5 \\ & 0.5 \\ & 0.5 \end{aligned}$		ns	Figure 4
Q	Charge Injection (Note 8)	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=0.1 \mathrm{nF}, \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{GEN}}=0 \Omega \end{aligned}$	$\begin{aligned} & 5.0 \\ & 3.3 \end{aligned}$		$\begin{aligned} & 7.0 \\ & 3.0 \end{aligned}$				pC	Figure 5
OIRR	Off Isolation (Note 10)	$\begin{aligned} & R_{L}=50 \Omega \\ & f=10 \mathrm{MHz} \end{aligned}$	1.65-5.5		-57				dB	Figure 6
Xtalk	Crosstalk	$\begin{aligned} & R_{\mathrm{L}}=50 \Omega \\ & \mathrm{f}=10 \mathrm{MHz} \end{aligned}$	1.65-5.5		-54				dB	Figure 7
BW	-3 dB Bandwidth	$\mathrm{R}_{\mathrm{L}}=50 \Omega$	1.65-5.5		250				MHz	Figure 10
THD	Total Harmonic W	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \mathrm{O} \\ & 0.5-\mathrm{V}_{\mathrm{P}-\mathrm{P}} \\ & =600 \mathrm{H} \text { to } 2 \mathrm{~Hz} \end{aligned}$			0.011				\%	

CAPACITANCE (Note 11)

Symbol	Parameter	Test Conditions	Typ	Max	Unit	Figure Number
C_{IN}	Select Pin Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$	2.3		pF	
$\mathrm{C}_{\mathrm{IO}-\mathrm{B}}$	B Port Off Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	6.5		pF	Figure 8
$\mathrm{C}_{I O A-O N}$	A Port Capacitance when Switch is Enabled	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	18.5		pF	Figure 9

8. Guaranteed by Design.
9. This parameter is guaranteed by design but not tested. The bus switch contributes no propagation delay other than the RC delay of the On Resistance of the switch and the 50 pF load capacitance, when driven by an ideal voltage source (zero output impedance).
10. Off Isolation $=20 \log _{10}\left[V_{A} / V_{B n}\right]$.
11. $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$, Capacitance is characterized but not tested in production.

APPENDIX A
DC ELECTRICAL EXTENDED AUTOMOTIVE TEMPERATURE RANGE CHARACTERISTICS

Symbol	Parameter	Test Conditions	v_{cc}(V)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		Unit
				Min	Typ	Max	Min	Max	
V_{IH}	HIGH Level Input Voltage		$\begin{array}{\|c\|} \hline 1.65-1.95 \\ 2.3-5.5 \end{array}$				$0.75 \mathrm{~V}_{\mathrm{CC}}$ $0.7 \mathrm{~V}_{\mathrm{CC}}$		V
VIL	LOW Level Input Voltage		$\begin{gathered} \hline 1.65-1.95 \\ 2.3-5.5 \end{gathered}$					$\begin{gathered} 0.25 \mathrm{~V}_{\mathrm{CC}} \\ 0.3 \mathrm{~V} \mathrm{CC} \end{gathered}$	V
IIN	Input Leakage Current	$0 \leq \mathrm{V}_{\mathrm{IN}} \leq 5.5 \mathrm{~V}$	0-5.5		± 0.05	± 0.1		± 1	$\mu \mathrm{A}$
IofF	OFF State Leakage Current	$0 \leq \mathrm{A}, \mathrm{B} \leq \mathrm{V}_{\mathrm{CC}}$	1.65-5.5		± 0.05	± 0.1		± 1	$\mu \mathrm{A}$
$\mathrm{R}_{\text {ON }}$	Switch On Resistance (Note 12)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=30 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-30 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-30 \mathrm{~mA} \end{aligned}$	4.5		$\begin{aligned} & 3.0 \\ & 5.0 \\ & 7.0 \end{aligned}$			$\begin{gathered} \hline 8.5 \\ 13.0 \\ 15.0 \end{gathered}$	Ω
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=24 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-24 \mathrm{~mA} \end{aligned}$	3.0		$\begin{aligned} & 4.0 \\ & 10 \end{aligned}$			$\begin{aligned} & 11 \\ & 20 \end{aligned}$	
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=8 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=2.3 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-8 \mathrm{~mA} \end{aligned}$	2.3		$\begin{aligned} & 5.0 \\ & 13 \end{aligned}$			$\begin{aligned} & 12 \\ & 30 \end{aligned}$	
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=4 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=1.65 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-4 \mathrm{~mA} \end{aligned}$	1.65		$\begin{aligned} & \hline 6.5 \\ & 17 \end{aligned}$			$\begin{aligned} & 20 \\ & 50 \end{aligned}$	
I_{CC}	Quiescent Supply Current All Channels ON or OFF	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{I}_{\mathrm{OUT}}=0 \end{aligned}$	5.5			1.0		10	$\mu \mathrm{A}$
	Analog Signal Range		V_{CC}	0		V_{CC}	0	V_{CC}	V
RRANGE	On Resistance Over S (Note 12		4.5 3.5 2.3 1.65					$\begin{aligned} & \hline 25 \\ & 50 \\ & 100 \\ & 300 \end{aligned}$	Ω

12. Measured by the voltage drop between A and B pins at the indicated current through the switch. On Resistance is determined by the lower of the voltages on the two (A or B Ports).
13. Flatness is defined as the difference between the maximum and minimum value of On Resistance over the specified range of conditions. 14. Guaranteed by Design.

* For $\Delta R_{\text {ON }}, R_{\text {FLAT, }}$ Q, OIRR, Xtalk, BW, THD, and CIN see $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ section.

APPENDIX A
AC ELECTRICAL EXTENDED AUTOMOTIVE TEMPERATURE RANGE CHARACTERISTICS

Symbol	Parameter	Test Conditions	$v_{c c}$(V)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		Unit	Figure Number
				Min	Typ	Max	Min	Max		
tpHL tpLH	Propagation Delay Bus to Bus (Note 16)	$\mathrm{V}_{1}=$ OPEN	$\begin{gathered} \hline 1.65-1.95 \\ 2.3-2.7 \\ 3.0-3.6 \\ 4.5-5.5 \end{gathered}$					$\begin{aligned} & 1.2 \\ & 0.8 \\ & 0.3 \end{aligned}$	ns	Figures 2, 3
$\begin{aligned} & \mathrm{tpZL}^{2} \\ & \mathrm{t}_{\mathrm{PZH}} \end{aligned}$	Output Enable Time Turn On Time (A to B_{n})	$\begin{aligned} & V_{\mathrm{I}}=2 \times \mathrm{V}_{\mathrm{CC}} \text { for } \mathrm{t}_{\text {PZL }} \\ & \mathrm{V}_{\mathrm{I}}=0 \mathrm{~V} \text { for } t_{\text {PZZ }} \end{aligned}$	$\begin{gathered} \hline 1.65-1.95 \\ 2.3-2.7 \\ 3.0-3.6 \\ 4.5-5.5 \end{gathered}$			$\begin{aligned} & 23 \\ & 13 \\ & 6.9 \\ & 5.2 \end{aligned}$	$\begin{aligned} & \hline 7.0 \\ & 3.5 \\ & 2.5 \\ & 1.7 \end{aligned}$	$\begin{aligned} & \hline 24 \\ & 14 \\ & 9.0 \\ & 7.0 \end{aligned}$	ns	Figures 2, 3
$\begin{aligned} & \mathrm{t}_{\mathrm{tPLZ}} \\ & \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Output Disable Time Turn Off Time (A Port to B Port)	$\begin{aligned} & V_{\mathrm{I}}=2 \times \mathrm{V}_{\mathrm{CC}} \text { for } \mathrm{t}_{\text {PLZ }} \\ & \mathrm{V}_{\mathrm{I}}=0 \mathrm{~V} \text { for } t_{\text {PHZ }} \end{aligned}$	$\begin{gathered} \hline 1.65-1.95 \\ 2.3-2.7 \\ 3.0-3.6 \\ 4.5-5.5 \end{gathered}$			$\begin{gathered} \hline 12.5 \\ 7.0 \\ 5.0 \\ 3.5 \end{gathered}$	$\begin{aligned} & 3.0 \\ & 2.0 \\ & 1.5 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 13 \\ & 7.5 \\ & 6.5 \\ & 5.0 \end{aligned}$	ns	Figures 2, 3
$\mathrm{t}_{\mathrm{B}-\mathrm{M}}$	Break Before Make Time (Note 15)		$\begin{gathered} \hline 1.65-1.95 \\ 2.3-2.7 \\ 3.0-3.6 \\ 4.5-5.5 \end{gathered}$				$\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.5 \\ & 0.5 \end{aligned}$		ns	Figure 4

15. Guaranteed by Design.
16. This parameter is guaranteed by design but not tested. The bus switch contributes no propagation delay other than the RC delay of the On Resistance of the switch and the 50 pF load capacitance, when driven by an ideal voltage source (zero output impedance).

* For $\Delta R_{\text {ON }}, R_{\text {FLAT }}$ Q, OIRR, Xtalk, BW, THD, and CIN see $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ section.
uww. BDTI C. com/ON

NLASB3157

AC LOADING AND WAVEFORMS

NOTE: Input driven by 50Ω source terminated in 50Ω NOTE: C_{L} includes load and stray capacitance NOTE: Input PRR = 1.0 MHz; $\mathrm{t}_{\mathrm{w}}=500 \mathrm{~ns}$

Figure 2. AC Test Circuit

Figure 4. Break Before Make Interval Timing

NLASB3157

AC LOADING AND WAVEFORMS

Figure 5. Charge Injection Test

Figure 6. Off Isolation WWW. BDTI

Figure 8. Channel Off Capacitance

Figure 9. Channel On Capacitance

Figure 10. Bandwidth

NLASB3157

PACKAGE DIMENSIONS

SC-88/SOT-363/SC-70
 DF SUFFIX
 CASE 419B-02
 ISSUE W

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982
2. CONTROLLING DIMENSION: INCH
3. 419B-01 OBSOLETE, NEW STANDARD 419B-02.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
A	0.80	0.95	1.10	0.031	0.037	0.043
A1	0.00	0.05	0.10	0.000	0.002	0.004
A3	0.20 REF			0.008 REF		
b	0.10	0.21	0.30	0.004	0.008	0.012
C	0.10	0.14	0.25	0.004	0.005	0.010
D	1.80	2.00	2.20	0.070	0.078	0.086
E	1.15	1.25	1.35	0.045	0.049	0.053
e	0.65 BSC			0.026 BSC		
L	0.10	0.20	0.30	0.004	0.008	0.012
HE	2.00	2.10	2.20	0.078	0.082	0.086

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

NLASB3157

PACKAGE DIMENSIONS

WDFN6 1.2x1.0, 0.4P
CASE 506AS-01
ISSUE C

DETAIL A ALTERNATE TERMINAL CONSTRUCTIONS

DETAIL B ALTERNATE CONSTRUCTIONS

NOTES

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30 mm FROM TERMINAL.
4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

DIM	MILLIMETERS	
	MIN	MAX
A	0.70	0.80
A1	0.00	0.05
A3	0.20 REF	
b	0.15	
D	1.20	
BSC		
E	1.00	
BSC		
e	0.40	
BSC		
L	0.30	0.40
L1	0.00	0.15
L2	0.40	0.50

DIMENSIONS: MILLIMETERS
*For additional information on our Pb -Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

> ON Semiconductor and ON are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free

USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your loca Sales Representative

