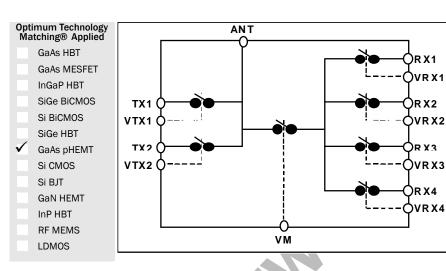


SP6T GAAS MULTI-BAND GSM ANTENNA SWITCH

Package Style: Bare Die



Product Description

The FMS2028 is a low loss, high isolation, broadband single-pole six-throw Gallium Arsenide antenna switch. The die is fabricated using the FL05 $0.5\mu m$ switch process from RFMD that offers leading edge performance optimized for switch applications.

The FMS2028 is designed for use in dual-, tri-, and quad-band GSM handset antenna switch and RF front end modules.

Features

- Very Low Tx Insertion Loss
- High Tx-Rx Isolation: >45dB typ. at 1.8GHz
- High Tx-Tx Isolation: >30dB typ. at 1.8GHz
- Excellent Low Control Voltage Performance
- Excellent Harmonic Performance

Applications

Suitable for Multi-band
 GSM/DCS/PCS/EDGE Applications

Parameter	Specification			Unit	Condition	
raidilletei	Min.	Тур.	Max.	Offic	Condition	
Electrical Specifications					$T_{AMBIENT}$ =25 °C, V_{CTRL} =0V/-5V, Z_{IN} = Z_{OUT} =50 Ω	
Tx Insertion Loss	0	0.4	0.55	dB	0.9 GHz	
	0	0.41	0.6	dB	1.8GHz	
Rx Insertion Loss	0	0.73	1	dB	0.9GHz	
	0	1.0	1.2	dB	1.8GHz	
Return Loss		23		dB	0.5 GHz to 2.5 GHz	
Isolation (Tx-Tx)	26	28.5	55	dB	0.9GHz	
	19.5	21	45	dB	1.8GHz	
Isolation (Tx-Rx)	42	47	55	dB	0.9GHz	
	37	42	55	dB	1.8GHz	
Isolation (Rx-Rx)	26	28		dB	0.5 GHz to 1.0 GHz	
	20	22		dB	1.0GHz to 2.0GHz	
PO.1dB		37		dBm	0.9GHz, CW	
2nd Harmonic Level	-100	-80	-70	dBc	0.9 GHz, P _{IN} =+35 dBm, CW ¹	
	-100	-80	-70	dBc	1.8GHz, P _{IN} =+33dBm, CW ¹	
3rd Harmonic Level	-100	-70	-65	dBc	0.9 GHz, P _{IN} =+35 dBm, CW ¹	
	-100	-72	-65	dBc	1.8GHz, P _{IN} =+33dBm, CW ¹	
Switching Speed			0.3	μS	10% to 90% RF and 90% to 10% RF, P _{IN} =0dBm	
			1	μs	50% to 90% RF and 50% to 90% RF, P _{IN} =0dBm	
Control Current	0.01	12	40	μА	0.9 GHz, P _{IN} =+35 dBm, V _{CTRL} =0V to 2.7 V	
	0.01	1.3	10	μΑ	1.8GHz, P _{IN} =0dBm, V _{CTRL} =0V to 2.7V	

Note: ¹Measured harmonic values are dependant upon system termination impedances at the harmonic frequency.

FMS2028

Absolute Maximum Ratings

Parameter	Rating	Unit
Maximum Input Power (P _{IN})	+27	dBm
Control Voltage (V _{CTRL})		V
Operating Temperature (T _{OPER})	-40 to 85	°C
Storage Temperature (T _{STOR})	-55 to 150	°C

Caution! ESD sensitive device.

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

RoHS status based on EUDirective 2002/95/EC (at time of this document revision).

The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

Truth Table

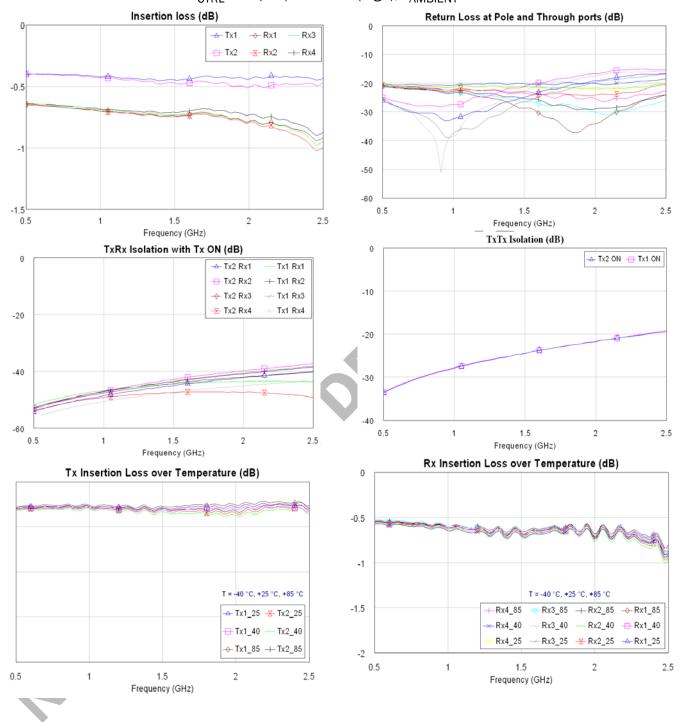
VM	VRX4	VRX3	VRX2	VRX1	VTX2	VTX1	On Path
Low	Low	Low	Low	Low	Low	High	ANT-TX1
Low	Low	Low	Low	Low	High	Low	ANT-TX2
High	Low	Low	Low	High	Low	Low	ANT-RX1
High	Low	Low	High	Low	Low	Low	ANT-RX2
High	Low	High	Low	Low	Low	Low	ANT-RX3
High	High	Low	Low	Low	Low	Low	ANT-RX4

Notes: High 2.7V±0.2V; Low -0V±0.2V

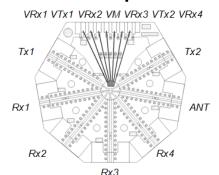
Pad Layout

	0
H	
	N I
F	on .
E	J J
D D	M
C	L
В	
A	MKI K

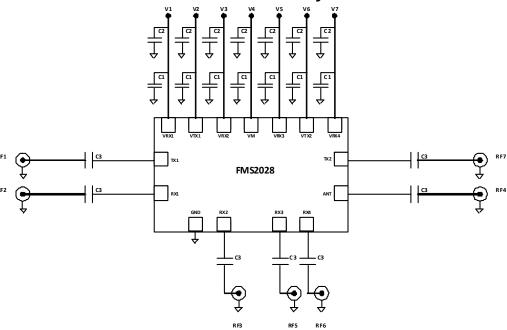
P	ad	Name	Description	Pin
	$ \overline{} $			Coordinates
\mathbb{Q}) `			(μ m)
	A	Tx1	Tx1 RF Output	125.9, 121.4
	В	VRx1	Rx1 Control Voltage	100.2, 215.9
(С	VTx1	Tx1 Control Voltage	110.4, 310.5
	D	VRx2	Rx2 Control Voltage	90.5, 405.1
	Ε	VM	Common Receive	90.5, 499.7
			Control Voltage	
	F	VRx3	Rx3 Control Voltage	90.5, 594.3
(G	VTx2	Tx2 Control Voltage	107, 688.9
	Н	VRx4	Rx4 Control Voltage	107, 783.5
	I	Tx2	Tx2 RF Output	125.9, 878.1
	J	ANT	Antenna	424.9, 499.7
	K	Rx1	Rx1 RF Output	568.2, 114.8
	L	GND	Ground	747.4, 282.7
I	M	Rx2	Rx2 RF Output	747.4, 380.3
I	N	Rx3	Rx3 RF Output	747.4, 681.2
(0	Rx4	Rx4 RF Output	747.4, 882.1


Note: Coordinates are referenced from the bottom left hand corner of the die to the center of bond pad opening.

Die Size (μm)	Die Thickness (μm)	Min. Bond Pad Pitch (μm)	Min. Bond Pad Opening (μ mx μ m)
842x980	150	94.6	65×65


Typical Measured Performance On Evaluation Board

Measurement Conditions: $V_{CTRL} = 0V$ (low) and 2.7V (high), $T_{AMBIENT} = 25^{\circ}C$ unless otherwise stated.



Evaluation Board Component Side Layout

Evaluation Board Layout

Bill of Materials

Label	Component
RFC	SMA RF connector
DCC	DC connector
C1	Capacitor, 47 pF, 0402
C2	Capacitor, 470 pF, 0603
C3	Capacitor, 100 pF, 0402
Board	Preferred evaluation board material is 0.25 mm thick ROGERS RT4350. All RF tracks should be 50Ω characteristic material.

Preferred Assembly Instructions

GaAs devices are fragile and should be handled with great care. Specially designed collets should be used where possible.

The back of the die is metallized and the recommended mounting method is by the use of conductive epoxy. Epoxy should be applied to the attachment surface uniformly and sparingly to avoid encroachment of epoxy on to the top face of the die and ideally should not exceed half the chip height. For automated dispense Ablestick LMISR4 is recommended. For manual dispense Ablestick 84-1 LMI or 84-1 LMIT are recommended. These should be cured at a temperature of 150°C for 1 hour in an oven especially set aside for epoxy curing only. If possible, the curing oven should be flushed with dry nitrogen. The gold-tin (80% Au 20% Sn) eutectic die attach has a melting point of approximately 280°C but the absolute temperature being used depends on the leadframe material used and the particular application. The maximum time should be kept to a minimum.

This part has gold (Au) bond pads requiring the use of gold (99.99% pure) bondwire. It is recommended that 25.4 mm diameter gold wire be used. Recommended lead bond technique is thermocompression wedge bonding with 0.001" (25µm) diameter wire. Bond force, time stage temperature, and ultrasonics are all critical parameters and the settings are dependant on the setup and application being used. Ultrasonic or thermosonic bonding is not recommended.

Bonds should be made from the die first and then to the mounting substrate or package. The physical length of the bondwires should be minimized especially when making RF or ground connections.

Handling Precautions

To avoid damage to the devices, care should be exercised during handling. Proper Electrostatic Discharge (ESD) precautions should be observed at all stages of storage, handling, assembly, and testing.

ESD/MSL Rating

These devices should be treated as Class 1A (250V to 500V) as defined in JEDEC Standard No. 22-A114. Further information on ESD control measures can be found in MIL-STD-1686 and MIL-HDBK-263.

Application Notes and Design Data

Application Notes and design data including S-parameters and large-signal models are available on request from www.rfmd.com.

Reliability

An MTTF of in excess of 9 million hours at a channel temperature of 150 °C is achieved for the process used to manufacture this device.

Disclaimers

This product is not designed for use in any space-based or life-sustaining/supporting equipment.

Ordering Information

Delivery Quantity	Ordering Code		
Standard Order Quantity (waffle-pack)	FMS2028-000		
Small Quantity (25)	FMS2028-000SQ		
Small Quantity (3)	FMS2028-000S3		