## Features

- Single 3V to 6.5V Power Supply
- High Dynamic Range
- Low Current Drain
- High LO Isolation
- LNA Power Down Mode for Large Signals


## Applications

- UHF Digital and Analog Receivers
- Digital Communication Systems
- Spread-Spectrum Communication Systems
- Commercial and Consumer Systems
- 433 MHz and 915 MHz ISM Band Receivers
- General Purpose Frequency Conversion


Functional Block Diagram

## Product Description

The RF2418 is a monolithic integrated UHF receiver front-end. The IC contains all of the required components to implement the RF functions of the receiver except for the passive filtering and LO generation. It contains an LNA (Iow-noise amplifier), a second RF amplifier, a dual-gate GaAs FET mixer, and an IF output buffer amplifier which will drive a $50 \Omega$ load. In addition, the IF buffer amplifier may be disabled and a high impedance output is provided for easy matching to IF filters with high impedances. The output of the LNA is made available as an output to permit the insertion of a bandpass filter between the LNA and the RF/Mixer section. The LNA section may be disabled by removing the VDD1 connection to the IC.

## Ordering Information

| RF2418 | Low Current LNA/Mixer |
| :--- | :--- |
| RF2418PCBA-41X | Fully Assembled Evaluation Board |

Optimum Technology Matching ${ }^{\circledR}$ Applied

| $\square$ GaAs HBT | $\square$ SiGe BiCMOS | $\square$ GaAs pHEMT | $\square$ GaN HEMT |
| :--- | :--- | :--- | :--- |
| $\square$ GaAs MESFET | $\square$ Si BiCMOS | $\square$ Si CMOS |  |
| $\square$ InGaP HBT | $\square$ SiGe HBT | $\square$ Si BJT |  |

## Absolute Maximum Ratings

| Parameter | Rating | Unit |
| :--- | :---: | :---: |
| Supply Voltage | -0.5 to 7 | $\mathrm{~V}_{\mathrm{DC}}$ |
| Input LO and RF Levels | +6 | dBm |
| Ambient Operating Temperature | -40 to +85 | ${ }^{\circ} \mathrm{C}$ |
| Storage Temperature | -40 to +150 | ${ }^{\circ} \mathrm{C}$ |

## 今 <br> Caution! ESD sensitive device.

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical perfor mance or functional operation of the device under Absolute Maximum Rating condiions is not implied

RoHS status based on EUDirective 2002/95/EC (at time of this document revision).
The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any nfringement of patents, or other rights of third parties, resulting from its use No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

| Parameter | Specification |  |  | Unit | Condition |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Min. | Typ. | Max. |  |  |
| Overall |  |  |  |  | $\begin{aligned} & \mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{RF}=850 \mathrm{MHz}, \\ & \mathrm{LO}=921 \mathrm{MHz} \end{aligned}$ |
| RF Frequency Range |  | 400 to 1100 |  | MHz |  |
| Cascade Power Gain |  | 23 |  | dB | High impedance output |
| Cascade IP3 |  | -13 |  | dBm | Referenced to the input |
| Cascade Noise Figure |  | 2.4 |  | dB | Single sideband, includes image filter with 1.0 dB insertion loss |
| First Section (LNA) |  |  |  |  |  |
| Noise Figure |  | 1.8 | 2.0 | dB |  |
| Input VSWR |  | 1.5:1 |  |  | With external series matching inductor |
| Input IP3 | +3.0 | +4.0 |  | dBm |  |
| Gain | 13 | 14 |  | dB |  |
| Reverse Isolation |  | 40 |  | dB |  |
| Output VSWR |  | 1.5:1 |  |  |  |
| Second Section (RF Amp, Mixer, IF1) |  |  |  |  | High impedance output |
| Noise Figure |  | 9.5 |  | dB | Single Sideband |
| Input VSWR |  | 1.5:1 |  |  | With external series matching inductor |
| Input IP3 |  | +1 |  | dBm |  |
| Conversion Power Gain | 7 | 9 |  | dB |  |
| Output Impedance |  | 4000 \|| 10pF |  | $\Omega$ | Open Collector |
| Second Section (RF Amp, Mixer, IF2) |  |  |  |  | Buffered output, $50 \Omega$ load |
| Noise Figure |  | 10 |  | dB | Single Sideband |
| Input VSWR |  | 1.5:1 |  |  | With external series matching inductor |
| Input IP3 | -0.5 | 0 |  | dBm |  |
| Conversion Gain | 5 | 6 |  | dB |  |
| Output Impedance |  | 30 |  | $\Omega$ |  |

RF2418
rfmd.com

| Parameter | Specification |  |  | Unit | Condition |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Min. | Typ. | Max. |  |  |
| LO Input |  |  |  |  |  |
| LO Frequency |  | 300 to 1200 |  | MHz |  |
| LO Level |  | -6 to +6 |  | dBm |  |
| LO to RF Rejection |  | 15 |  | dB |  |
| LO to IF Rejection |  | 40 |  | dB | With pin 5 connected to ground. |
| LO Input VSWR |  | 1.3:1 |  |  | In order to achieve a low VSWR match at this input, an $82 \Omega$ resistor to ground is placed in parallel with this port. |
| Power Supply |  |  |  |  |  |
| Voltage | 3.0 |  | 6.5 | V |  |
| Current Consumption |  | 14 |  | mA | $\mathrm{V}_{\text {CC }}=5.0 \mathrm{~V}$, LNA On, Mixer On, Buffer Off |
|  | 12 | 20 | 26 | mA | $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$, LNA On, Mixer On, Buffer On |
|  | 6 | 9 | 20 | mA | $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$, LNA Off, Mixer On, Buffer Off |


| Pin | Function | Description | Interface Schematic |
| :---: | :---: | :---: | :---: |
| 1 | LNA IN | A series 10 nH matching inductor is necessary to achieve specified gain and noise figure at 900 MHz . This pin is NOT internally DC-blocked. An external blocking capacitor must be provided if the pin is connected to a device with DC present. A DC path to ground (i.e. an inductor or resistor to ground) is, however, acceptable at this pin. If a blocking capacitor is required, a value of 22 pF is recommended. |  |
| 2 | GND | Ground connection. Keep traces physically short and connect immediately to ground plane for best performance. |  |
| 3 | VDD1 | Supply Voltage for the LNA only. A 22 pF external bypass capacitor is required and an additional $0.01 \mu \mathrm{~F}$ is required if no other low frequency bypass capacitors are near by. The trace length between the pin and the bypass capacitors should be minimized. The ground side of the bypass capacitors should connect immediately to ground plane. <br> For large input signals, VDD1 may be disconnected, resulting in the LNA's gain changing from +11 dB to -26 dB and current drain decreasing by 4 mA . If the LNA is never required for use, then this pin can be left unconnected or grounded, and Pin 11 is used as the first input. |  |
| 4 | VDD2 | Power supply for the IF buffer amplifier. If the high impedance mixer output is being used, then this pin is not connected. |  |
| 5 | IF BYP | If this pin is connected to ground, an internal 10 pF capacitor is connected in parallel with the mixer output. This capacitor functions as an LO trap, which reduces the amount of LO to IF bleed-through and prevents high LO voltages at the mixer output from degrading the mixer's dynamic range. At higher IF frequencies, this capacitance, along with parasitic layout capacitance, should be parallel resonated out by the choice of the bias inductor value at pin 7 . If the internal capacitor is not connected to ground, the buffer amplifier could become unstable. A $\sim 10 \mathrm{pF}$ capacitor should be added at the output to maintain the buffer's stability, but the gain will not be significantly affected. |  |
| 6 | IF2 OUT | $50 \Omega$ buffered (open source) output port, one of two output options. Pin 7 must have a bias resistor to $V_{D D}$ and pin 6 must have a bias resistor to ground (see Buffered Output Application Schematic) in order to turn the buffer amplifier on. Current drain will increase by approximately 8 mA at 5 V , and by approximately 5 mA at 3 V . It is recommended that these bias resistors be less than $1 \mathrm{k} \Omega$. |  |
| 7 | IF1 OUT | High impedance (open drain) output port, one of two output options. This pin must be connected to $\mathrm{V}_{\mathrm{DD}}$ through a resistor or inductor in order to bias the mixer, even when using IF2 Output. In addition, a $0.01 \mu \mathrm{~F}$ bypass capacitor is required at the other end of the bias resistor or inductor. The ground side of the bypass capacitor should connect immediately to ground plane. This output is intended to drive high impedance IF filters. The recommended matching network is shunt L , series C (see the application schematic, high impedance output). This topology will provide matching, bias, and DC-blocking. |  |
| 8 | LO IN | Mixer LO input. A high-pass matching network, such as a single shunt inductor (as shown in the application schematics), is the recommended topology because it also rejects IF noise at the mixer input. This filtering is required to achieve the specified noise figures. This pin is NOT internally DC-blocked. An external blocking capacitor must be provided if the pin is connected to a device with DC present. A DC path to ground (i.e. an inductor or resistor to ground) is, however, acceptable at this pin. If a blocking capacitor is required, a value of 22 pF is recommended. |  |
| 9 | RF BYP | Connection for the external bypass capacitor for the mixer RF input preamp. 1000 pF is recommended. The trace length between the pin and the capacitor should be minimized. The ground side of the bypass capacitor should connect immediately to ground plane. |  |

RF2418
rfmd.com

| Pin | Function | Description | Interface Schematic |
| :---: | :---: | :--- | :--- |
| $\mathbf{1 0}$ | GND | Same as pin 2. |  |
| $\mathbf{1 1}$ | RF IN | Mixer RF Input port. For a $50 \Omega$ match at 900 MHz use a 15 nH series <br> inductor. This pin is NOT internally DC-blocked. An external blocking capac- <br> itor must be provided if the pin is connected to a device with DC present. A <br> DC path to ground (i.e. an inductor or resistor to ground) is, however, <br> acceptable at this pin. If a blocking capacitor is required, a value of 22 pF is <br> recommended.To minimize the mixer's noise figure, it is recommended to <br> have a RF bandpass filter before this input. This will prevent the noise at <br> the image frequency from being converted to the IF. |  |
| $\mathbf{1 2}$ | GND | Same as pin 2. |  |
| $\mathbf{1 3}$ | GND | Same as pin 2. |  |
| $\mathbf{1 4}$ | LNA OUT | $50 \Omega$ output. Internally DC-blocked. |  |

## Package Drawing



## Application Schematic High Impedance Output Configuration 850 MHz



L1 and C 1 are picked to match the mixer's outputimpedance ( $4 \mathrm{k} \Omega \| 10 \mathrm{pF}$ ) to the IF filter's impedance, at the IF frequency. C 1 also serves as a DC block, in case the IF filter is notan open circuit at DC

## Application Schematic Buffered Output Configuration 850 MHz


#### Abstract




## Evaluation Board Schematic <br> RF $=850 \mathrm{MHz}, \mathrm{IF}=71 \mathrm{MHz}$



## Evaluation Board Layout

Board Size 1.52" x 1.52"
Board Thickness 0.031", Board Material FR-4


High Impedance Mixer Gain versus Voltage, RF=850MHz


High Impedance Mixer Input IP3 versus Voltage,


Buffered LNA Gain versus Voltage,
RF=850MHz


High Impedance Casc. Gain versus Voltage,


High Impedance Casc. Input IP3 versus Voltage, RF $=850 \mathrm{MHz}$


Buffered Mixer Gain versus Voltage, RF=850MHz


RF2418
rfmd.com



Buffered LNA Noise Figure versus Voltage, RF=850MHz Part to Part Variation


Buffered LNA Input versus Voltage,


Buffered Casc. Input IP3 versus Voltage,


Buffered Mixer Noise Figure versus Voltage,


