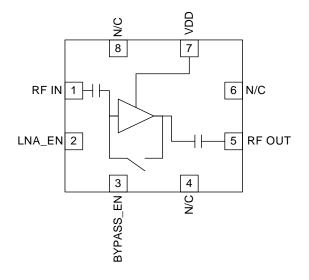


4.9GHz TO 5.85GHZ LOW NOISE AMPLIFIER WITH BYPASS

Package Style: 2.2mmx2.2mm


SIESEOT

Features

- 4.9GHz to 5.85GHz Operation
- Bypass Function Included
- 2.3V to 4.8V Single Supply
- 1.8dB Noise Figure
- 12dB Typical Gain
- -5.0dB Gain in Bypass Mode

Applications

- High Band LNA With Bypass
- General Purpose Low Noise Amplifier

Functional Block Diagram

Product Description

The RF5601 is a high performance Low Noise Amplifier design for 802.11a applications (4.9GHz to 5.85GHz) and other portable consumer electronics. This miniature LNA features a high dynamic range and high intercept point with low current consumption around 12mA. The LNA is DC blocked and internally matched to 50Ω at input and output pins. The IC is featured in a 2.2mmx2.2mmx0.5mm module compatible plastic package.

Ordering Information

RF5601	Standard 25 piece bag
RF5601SR	Standard 100 piece reel
RF5601TR7	Standard 2500 piece reel
RF5601PCK-410	Fully Populated Evaluation Board with 5 pcs Sample Bag

Optimum Technology Matching® Applied

find c

🗌 GaAs HBT	□ SiGe BiCMOS	🗹 GaAs pHEMT	🗌 GaN HEMT
GaAs MESFET	🗌 Si BiCMOS	🗌 Si CMOS	□ RF MEMS
InGaP HBT	SiGe HBT	🗌 Si BJT	

(+1) 326-678-5570 or sales-surporter

RF MCR0 DEVICES®, RFMDB, Optimum Technology Matching®, Enabling Wireless Connectivity^{III}, ProverStard®, POLARIS^{IVI} TOTAL RADIO^{IVI} and UtilinateBlue^{IVI} are trademarks of RFMD. LLC. BLUETOOTH is a trade mark owned by Bluetooth SiG, Inc., U.S.A. and licensed for use by RFMD. All other trade names, trademarks and registered trademarks are the property of their respective owners. ©2006, RF Micro Devices, Inc. 7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical

support, contact RF

RF5601

Absolute Maximum Ratings

•		
Parameter	Rating	Unit
DC Supply Voltage	5.5	V
RF Input Power	+5*	dBm
Operating Ambient Temperature	-40 to +85	°C
Storage Temperature	-40 to +150	°C
Moisture Sensitivity	MSL2	

*Note: Maximum input power with a 50 Ω load in High Gain mode.

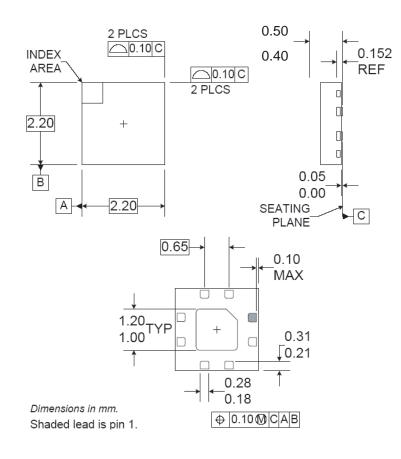
Caution! ESD sensitive device.

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

RFMD Green: RoHS compliant per EU Directive 2002/95/EC, halogen free per IEC 61249-2-21, < 1000 ppm each of antimony trioxide in polymeric materials and red phosphorus as a flame retardant, and <2% antimony in solder.

Parameter	Specification			Unit	Condition	
Farameter	Min.	Тур.	Max.	Unit	Condition	
Typical Conditions					Temp=25 °C, V _{DD} =3.3V, LNA_EN=3.3V, Bypass_EN=3.3V in high gain mode, Bypass_EN=0V in Bypass mode, Frequency=4.9GHz to 5.85GHz unles other- wise noted in the condition column.	
Frequency	4.9		5.85	GHz		
DC Voltage Supply (V _{DD})	2.3	3.3	4.8	V		
LNA_EN Low (LNA Off)			0.2	V	See logic table for additional control settings.	
LNA_EN High (LNA On)	2.3	3.3	VDD	V	BYP_EN control must be high simultaneously for High Gain Mode. See control table.	
Bypass Select Low (Bypass Mode ON)			0.2	V	Bypass_EN control. See logic table for more details.	
Bypass Select High (Bypass Mode OFF)	1.8	3.3	VDD	V	Bypass_EN control. See logic table for more details.	
LNA Current						
LNA V _{DD}		12	17	mA	LNA in "On" state, over full DC supply range, LNA_EN supply range and over normal operat- ing temperature range (-20°C to 75°C)	
		3	5	μΑ	LNA in "Off" state, V _{DD} =0V; LNA_EN=0V, Bypass_EN=0V	
LNA Enable		2	10	μΑ	V_{DD} =2.3V to 4.8V, LNA_EN=2.3V to 4.8V, over full frequency range, and over normal operating temperatures - 20°C to +75°C	
High Gain Mode						
Gain	9	12	15	dB	High gain mode "LNA is on", over full V _{DD} and LNA_EN ranges, over frequency and over full temperature range from -40°C to +85°C	
Noise Figure						
Hi Gain Mode		1.8	2.6	dB	LNA is in high gain mode "ON state" over full V_{DD} and LNA_EN, and Byp_EN voltages, over frequency and normal operating temperatures (-20 ° C to +75 ° C)	
Bypass Mode						
Gain		-5.0	-3.5	dB	WiFi Bypass mode	
Noise Figure		-5.0	-3.5	dB	WiFi Bypass mode	
Passband Ripple	-1.0		+1.0	dB	LNA is in High Gain mode, over full frequency range, over full $V_{\rm DD}$ and LNA_EN voltage range	
Input IP3		+9		dBm	WiFi Rx Mode, High Gain mode	
WiFi Rx Port Return Loss		-15	-9.6	dB	\$22	

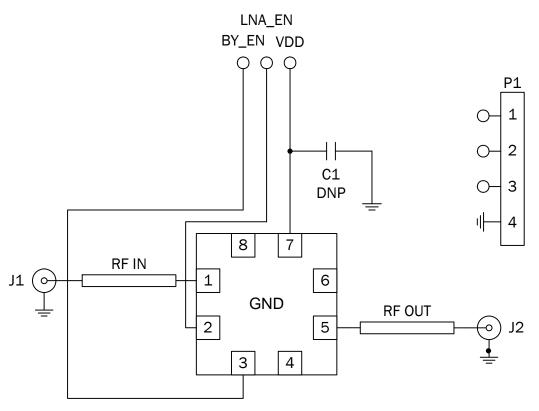

Parameter	Specification			Unit	Condition	
Farameter	Min.	Тур.	Max.	Unit	Condition	
Typical Conditions (continued)					Temp=25°C, V _{DD} =3.3V, LNA_EN=3.3V, Bypass_EN=3.3V in high gain mode, Bypass_EN=0V in Bypass mode, Frequency=4.9GHz to 5.85GHz unles other- wise noted in the condition column.	
WiFi Rx Port Impedance		50		Ω	No external matching	
LNA Turn On/Off Time		100	160	nSec		
ESD						
Human Body Model	500			V	EIA/JESD22-114A RF pins	
	500			V	EIA/JESD22-114A DC pins	
Charge Device Model	350			V	JESD22-C101C all pins	

Pin	Function	Description
1	RF IN	RF Input. Input is matched to 50Ω and DC block is provided internally.
2	LNA_EN	LNA Enable. Please see truth table for operation.
3	Bypass_EN	Bypass Enable. Please see truth table for operation.
4	NC	No Connect.
5	RF OUT	RF Output. Output is matched to 50Ω and DC-block is provided internally.
6	NC	No Connect.
7	VDD	Supply voltage for the LNA circuit.
8	NC	No Connect
Pkg	GND	The center metal base of the QFN package provides DC and RF ground as well as heat sink for the amplifier.
Base		

Package Drawing

2.2mmx2.2mmx0.5mm

RFMD

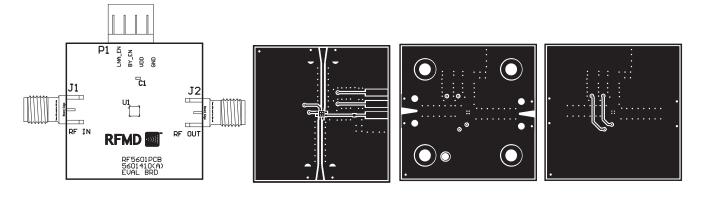

rfmd.com

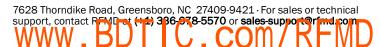
•**>))**)))

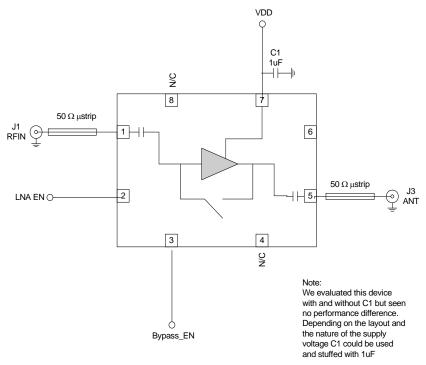
Evaluation Board Schematic

Truth Table

Mode	Controls			
	VDD	LNA_EN	BYP_EN	
High Gain	High	High	High	
Bypass Mode	High	Low	Low	
Undefined*	High	High	Low	
High In/Out Isolation	High	Low	High	


*This state is not recommended

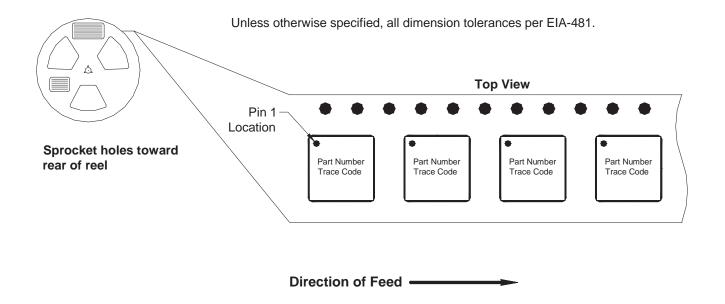


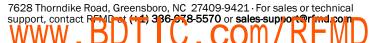


Evaluation Board Layout

Application Schematic - 4.9 GHz to 5.85 GHz

Tape and Reel

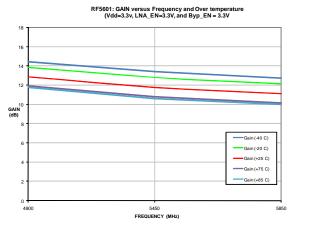

Carrier tape basic dimensions are based on EIA 481. The pocket is designed to hold the part for shipping and loading onto SMT manufacturing equipment, while protecting the body and the solder terminals from damaging stresses. The individual pocket design can vary from vendor to vendor, but width and pitch will be consistent.

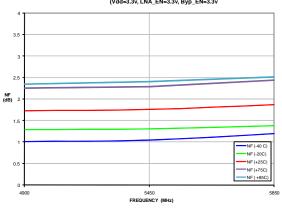

Carrier tape is wound or placed onto a shipping reel either 330 mm (13 inches) in diameter or 178 mm (7 inches) in diameter. The center hub design is large enough to ensure the radius formed by the carrier tape around it does not put unnecessary stress on the parts.

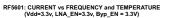
Prior to shipping, moisture sensitive parts (MSL level 2a-5a) are baked and placed into the pockets of the carrier tape. A cover tape is sealed over the top of the entire length of the carrier tape. The reel is sealed in a moisture barrier ESD bag with the appropriate units of desiccant and a humidity indicator card, which is placed in a cardboard shipping box. It is important to note that unused moisture sensitive parts need to be resealed in the moisture barrier bag. If the reels exceed the exposure limit and need to be rebaked, most carrier tape and shipping reels are not rated as bakeable at 125°C. If baking is required, devices may be baked according to section 4, table 4-1, of Joint Industry Standard IPC/JEDEC J-STD-033.

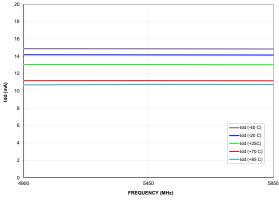
The table below provides useful information for carrier tape and reels used for shipping the devices described in this document.

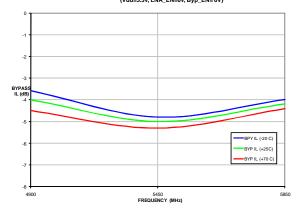
RFMD Part Number	Reel Diameter Inch (mm)	Hub Diameter Inch (mm)	Width (mm)	Pocket Pitch (mm)	Feed	Units per Reel
RF5601TR7	7 (178)	2.4 (61)	12	4	Single	2500








RF5601: NF versus Frequency and full temeprature range (Vdd=3.3v, LNA_EN=3.3v, Byp_EN=3.3v



(**mgp** 10 Edli