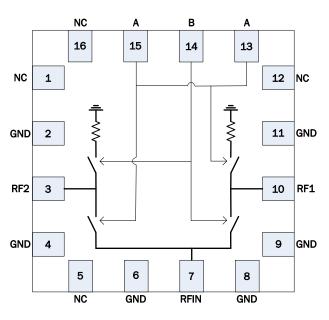


rfmd.com

RFSW2043

DC TO 20GHz SPDT pHEMT GaAs SWITCH

Package: QFN, 16 pin, 0.8mmx3mmx3mm



Features

- Low Insertion Loss: 2.25dB at 20GHz
- High Isolation: 26dB at 20GHz
- Excellent Return Loss
- 21nS Switching Speed
- GaAs pHEMT Technology
- Compact 3mmx3mm QFN package

Applications

- Broadband Communications
- Test Instrumentation
- Fiber Optics
- Military
- Aerospace

Functional Block Diagram

Product Description

RFMD's RFSW2043 is a broadband absorptive SPDT GaAs microwave monolithic integrated circuit (MMIC) switch designed to operate from DC to 20 GHz using the RFMD FD05 0.5 µm switch process. It features low insertion loss of 2.25 dB at 20 GHz and high isolation of 26 dB at 20 GHz while being packaged in a compact low cost 3 mmx3 mm QFN package for easy end use assembly. The switch uses complementary control logic of -5/0V and does not require a separate bias supply.

Ordering Information

RFSW2043S2 2-piece sample bag
RFSW2043SB 5-piece bag
RFSW2043SQ 25-piece bag
RFSW2043SR 100 pieces on 7" reel
RFSW2043TR7 750 pieces on 7" reel

RFSW2043PCK-410 Evaluation board with a 2-piece sample bag

Optimum Technology Matching® Applied

☐ GaAs HBT	☐ SiGe BiCMOS	GaAs pHEMT	☐ GaN HEMT
☐ GaAs MESFET	☐ Si BiCMOS	☐ Si CMOS	☐ BiFET HBT
☐ InGaP HBT	☐ SiGe HBT	☐ Si BJT	☐ LDMOS

RF MICRO DEVICES®, RFMD®, Optimum Technology Matching®, Enabling Wireless Connectivity™, PowerStar®, POLARIS™ TOTAL RADIO™ and UttimateBlue™ are trademarks of RFMD, LLC. BLUETOOTH is a trade mark owned by Bluetooth SIG, Inc., U.S.A. and licensed for use by RFMD. All other trade names, trademarks and registered trademarks are the property of their respective owners. ©2006. RF Micro Devices, Inc.

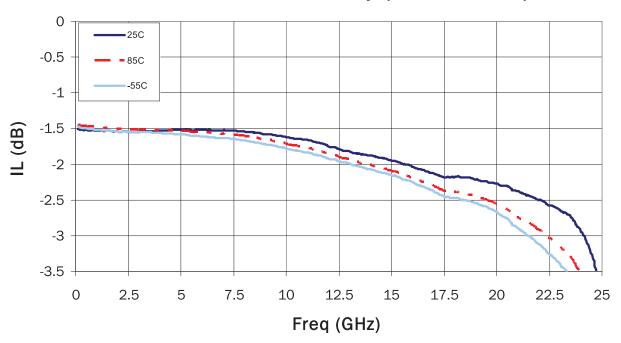
RFSW2043

Absolute Maximum Ratings

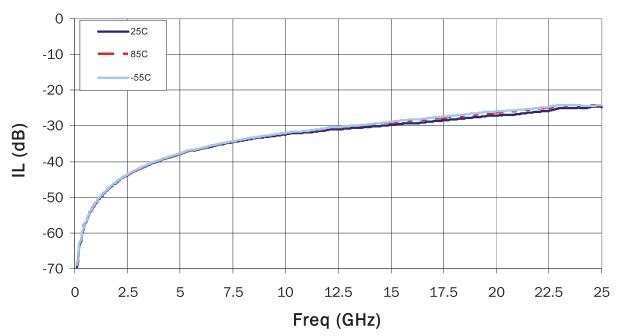
_		
Parameter	Rating	Unit
Drain Bias Voltage (V _{CTRL})	-10	V _{DC}
RF Input Power (Any State)	+30	dBm
RF Output Power (ON State)	+30	dBm
RF Output Power (OFF State)	+21	dBm
Storage Temperature	-55 to +150	°C
Operating Temperature	-55 to +85	°C
ESD JESD22-A114 Human Body Model (HBM)	Class 1A (All pads)	

Caution! ESD sensitive device.

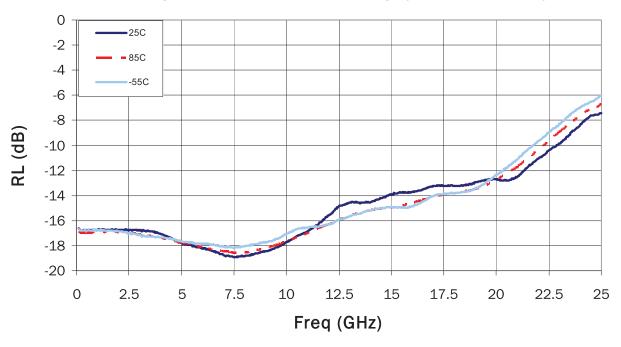
Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.


RoHS status based on EUDirective 2002/95/EC (at time of this document revision).

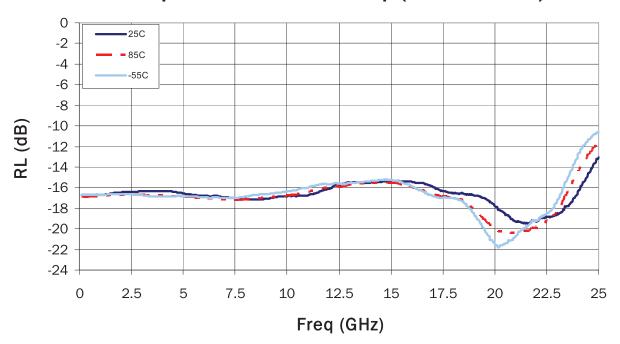
The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.


Parameter	Specification		Unit	Condition		
Farameter	Min.	Тур.	Max.	UIIIL	Condition	
Operating Frequency	DC		20	GHz		
Insertion Loss (OGHz to 5GHz)		1.5	2.2	dB	ON State, All Temps	
Insertion Loss (5 GHz to 10 GHz)		1.6	2.5	dB	ON State, All Temps	
Insertion Loss (10GHz to 15GHz)		1.8	2.8	dB	ON State, All Temps	
Insertion Loss (15 GHz to 20 GHz)		2.25	3.4	dB	ON State, All Temps	
Isolation (DC to 20GHz)	20	30		dB	ON State, All Temps	
Input Return Loss (DC to 20GHz)	10	16		dB	ON State, All Temps	
Output Return Loss (DC to 20GHz)	12	16		dB	ON State, All Temps	
Output Return Loss (DC to 20GHz)	15	22		dB	OFF State, All Temps	
OIP3 (2GHz to 20GHz)	35	46		dBm	100MHz spacing, 2dBm input, 25 °C	
OIP2 (3GHz to 20GHz)	75	82		dBm	100 MHz spacing, 2dBm input, 25 °C	
Switching Speed		21	25	ns	50% control to 90% RF, All Temps	
Control Current		41	55	μA	Sum of all control lines, 25 °C	
Control Voltage		0/-5		V		

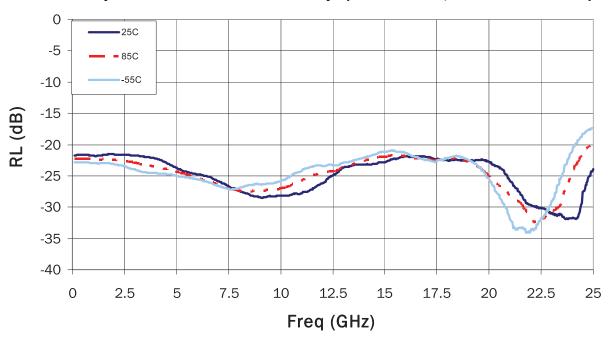
Insertion Loss vs Temp (Vcontrol = -5v)



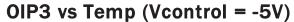
Isolation vs Temp (Vcontrol = -5v)

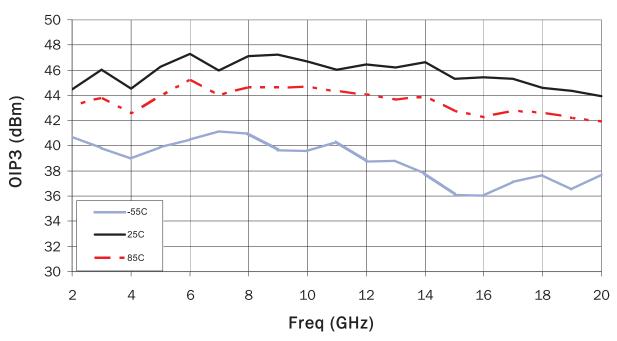


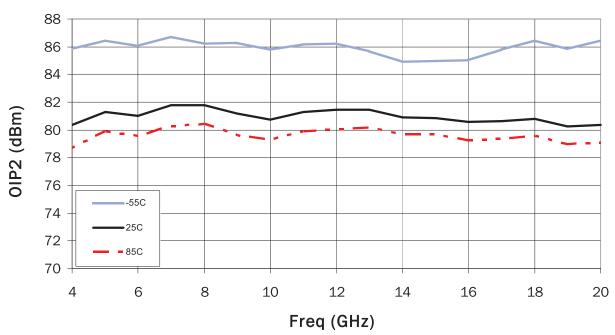
Input Return Loss vs Temp (Vcontrol = -5v)



Output Return Loss vs Temp (Vcontrol = -5v)

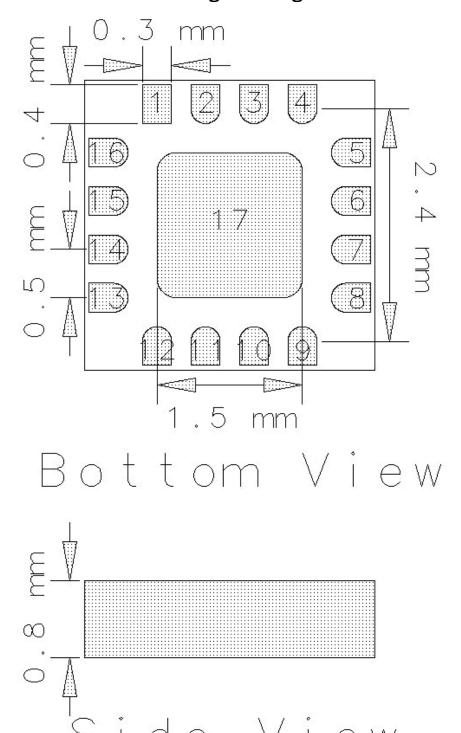



Output Return Loss vs Temp (OFF State, Vcontrol = -5v)


RFSW2043

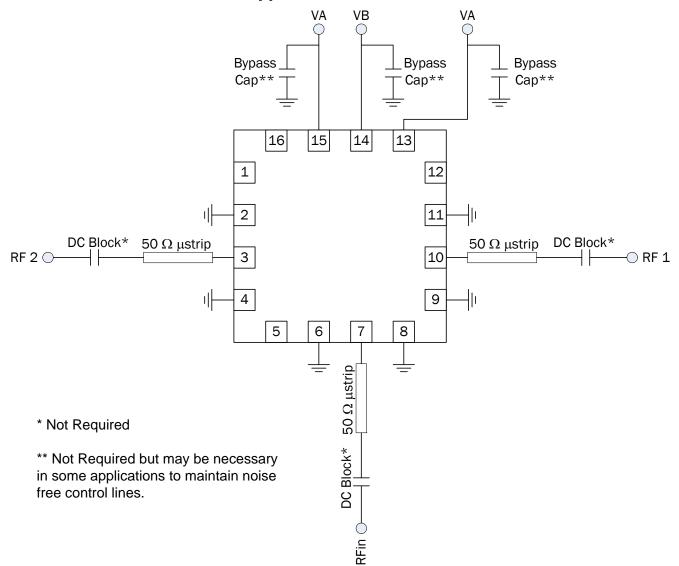
OIP2 vs Temp (Vcontrol = -5V)

Pin	Function	Description	Interface Schematic
1, 5, 12, 16	NC	No Connect	
2, 4, 6, 8, 9, 11	GND	Ground. Grounding via should be located as close as possible to this pin.	
3, 10	RF2, RF1	RF output. These pins are DC coupled and matched to 50Ω from DC to $20\text{GHz}.$	RFout 500hm
13, 14, 15	VA, VB, VA	DC control for switch operation. Nominal operating voltage is -5V. The two VA pins (13 and 15) are connected internally for added layout flexibility.	2kohm 4.4pF
7	RFIN	RF input. This pin is DC coupled and matched to 50Ω from DC to 20 GHz.	RFin •————

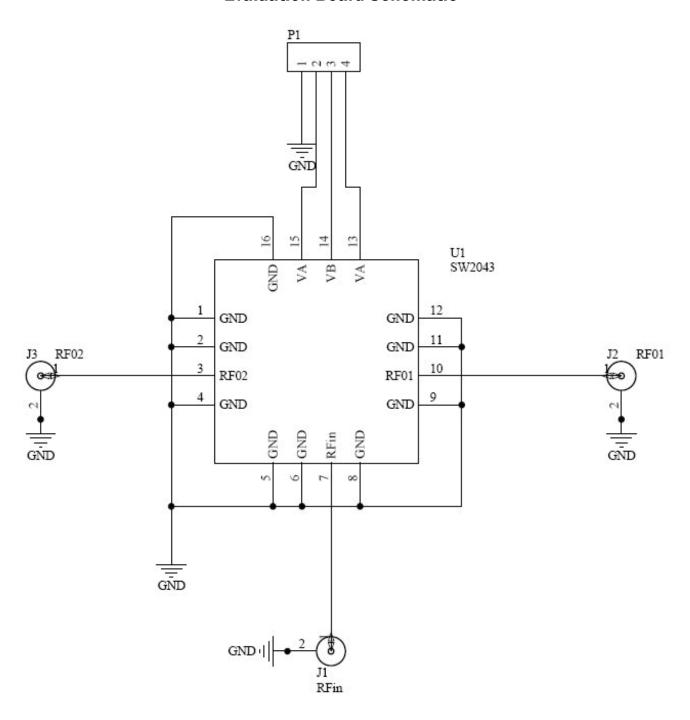

Truth Table

High = $-5V \pm 0.2V$, Low = 0V, $\pm 0.2V$

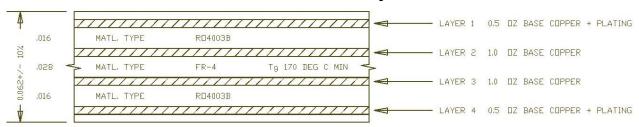
Control Line		RF Path
VA	VB	
High	Low	RFin to RF1
Low	High	RFin to RF2

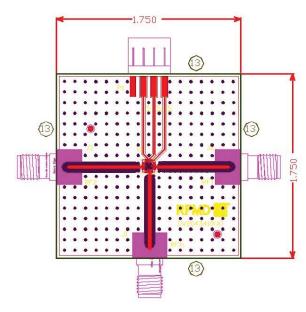

Package Drawing

Maximum Height=1.0mm
Dimensional Tolerance=+0.05mm



Application Schematic




Evaluation Board Schematic

Evaluation Board Layout

