

RFVC1825 LOW NOISE MMIC VCO WITH BUFFER AMPLIFIER

Package: QFN, 24 Pin, 4mm x 4mm

Features

- 7.8GHz to 8.7GHz Operation
- -107 dBc/Hz Phase Noise at 100KHz offset
- +11.0 dBm P_{OUT}
- No external resonator or elements needed
- 4mmx4mm QFN package
- 3V V_{CC} operation

Applications

- Instrumentation
- Military
- Aerospace
- Point to Point Radio
- Test Equipment
- VSAT
- CATV

Functional Block Diagram

Product Description

RFMD's RFVC1825 is a 3V InGaP MMIC VCO with an integrated buffer amplifier operating over a frequency range of 7.8GHz to 8.7GHz. Its monolithic tuning structure provides excellent temperature, shock, and vibration performance while its integrated buffer amplifier provides an output power of 11dBm from a 3V supply. Phase noise is -107dBc/Hz at 100kHz offset. The RFVC1825 is available in a low cost leadless ceramic 4mmx4mm surface mount QFN outline.

Ordering Information

RFVC1825S2	2 piece sample bag
RFVC1825PCK-410	PCBA with 2 piece sample bag
RFVC1825SB	5 piece bag
RFVC1825SQ	25 piece bag
RFVC1825SR	100 pieces on 7" reel
RFVC1825TR7	750 pieces on 7"reel

(+1) 326-678-5570 or sales-supporter

Optimum Technology Matching® Applied

md c

🗌 GaAs HBT	SiGe BiCMOS
□_GaAs MESFET	Si BiCMOS
🗹 InGaP HBT	SiGe HBT

□ GaAs pHEMT □ GaN HEMT □ Si CMOS □ BiFET HBT □ Si BJT □ LDMOS

RF MICRO DEVICES®, RFMD®, Optimum Technology Matching®, Enabling Wireless Connectivity^w, PowerStar®, POLARIS^w TOTAL RADIO^w and UttimateBlue^w are trademarks of RFMD, LLC. BLUETOOTH is a trade mark owned by Bluetooth SIG, Inc., U.S.A. and licensed for use by RFMD. All other trade names, trademarks and registered trademarks are the property of their respective owners. ©2006, RF Micro Devices, Inc.

7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical

support, contact RF

RFVC1825

Absolute Maximum Ratings

Parameter	Rating	Unit
Bias Voltage (V _{DD})	+3.25	V _{DC}
V _{TUNE}	14	V _{DC}
Operating Junction Temperature (T _J)	99	°C
Continuous Power Dissipation (T=+85°C)	200	mW
Thermal Resistance (Pad to Die Bottom)	10	°C/W
Storage Temperature	-40 to +150	°C
Operating Temperature	-40 to +85°C	°C
ESD JESD22-A114 Human Body Model (HBM)	Class 0, 150V	

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

RoHS status based on EUDirective2002/95/EC (at time of this document revision).

The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

Paramator	Specification		Unit	Condition		
Farameter	Min.	Тур.	yp. Max.			
Electrical Specifications					T_{A} =+25 °C, V_{CC} =+3.0 V_{DC}	
Operating Frequency	7.8		8.7	GHz		
V _{TUNE}	0		12	V		
V _{TUNE} Leakage Current		0.36	1.0	uA	At V _{TUNE} =10V	
Output Power	5	11		dBm	At V _{TUNE} =5V	
Phase Noise at 10 kHz Offset		-80		dBc/Hz	At V _{TUNE} =5V	
Phase Noise at 100 kHz Offset		-107		dBc/Hz	At V _{TUNE} =5V	
Harmonics						
2nd		-10		dBc	At V _{TUNE} =5V	
3rd		-25		dBc		
Output Spurious			-70	dBc		
Output Return Loss		10		dB		
Supply Current		67	80	mA	At V _{TUNE} =5V	
Pulling		1.6		MHz	VSWR 2.5:1 all phases	
Pushing		-47		MHz/V	At V _{TUNE} =5V	
Frequency Drift		-0.53		MHz/C	At V _{TUNE} =5V	

3 of 6

Typical Electrical Performance

10

RFVC1825

Package Drawing

Notes:

- 1. Dimensions in mm.
- 2. Dimensions are for reference only.
- 3. Package body material: Alumina.
- 4. Lead and paddle plating: Au, 30u" minimum.

Recommended PCB Layout

rfmd.com

Pin	Function	Description	Interface Schematic
15	GND	Connect directly to PCB ground for best performance.	
16	RFOUT	RF out. This pad is AC coupled and matched for optimum P_{OUT} . A 50 Ω termination is recommended for this pin.	
20	VCC	Connect 3V to power both the oscillator core and the buffer amplifier.	
22	VTUNE	Direct connection to the varactor diodes used to vary the frequency of oscillation.	Vtune
Pkg Base	GND	Ground connection. Solder package bottom directly to ground plane for best performance.	

Application Circuit Block Diagram

Evaluation Board Layout

