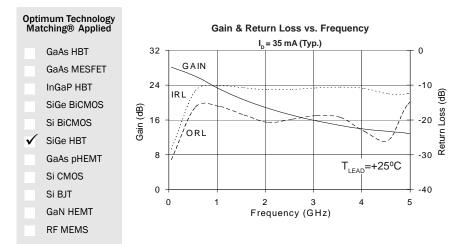


rfmd.com


DC to 5000 MHz, CASCADABLE SiGe HBT **MMIC AMPLIFIER**

Product Description

The SGA3586Z is a high performance SiGe HBT MMIC Amplifier. A Darlington configuration featuring one-micron emitters provides high F_T and excellent thermal performance. The heterojunction increases breakdown voltage and minimizes leakage current between junctions. Cancellation of emitter junction non-linearities results in higher suppression of intermodulation products. Only two DC-blocking capacitors, a bias resistor, and an optional RF choke are required for operation.

Features

- High Gain: 25dB at 850MHz
- Cascadable 50Ω Gain Block
- High Output IP₃: 25dBm typ. at 1950MHz
- Low Noise Figure: 2.5dB tvp. at 1950 MHz
- Low Current Draw: 35 mA typ.
- Single Voltage Supply Operation

Applications

- PA Driver Amplifier
- Cellular, PCS, GSM, UMTS
- IF Amplifier

nd

Wireless Data, Satellite

Baramatar	Specification			Unit	Condition
Parameter	Min.	Тур.	Max.	Unit	Condition
Small Signal Gain	22.5	25.0	27.5	dB	850MHz
	18.0	20.0	22.0	dB	1950MHz
		18.5		dB	2400MHz
Output Power at 1dB Compression		13.0		dBm	850MHz
	11.0	12.5		dBm	1950MHz
Output Third Intercept Point		24.5		dBm	850MHz
	23.0	25.0		dBm	1950MHz
Bandwidth Determined by Return Loss		5000		MHz	>10dB
Input Return Loss	9.5	11.0		dB	1950MHz
Output Return Loss	14.0	20.0		dB	1950MHz
Noise Figure		2.5	3.5	dB	1950MHz
Device Operating Voltage	3.0	3.25	3.5	V	
Device Operating Current	31	35	39	mA	
Thermal Resistance (Junction - Lead)		97		°C/W	

Test Conditions: $I_D = 35 \text{ mA Typ.}$, $T_{LEAD} = 25^{\circ}\text{C}$, $Z_S = Z_L = 50 \Omega$, P_{OUT} per tone = -5 dBm, OIP₃ Tone Spacing = 1MHz

support, contact R

Absolute Maximum Ratings

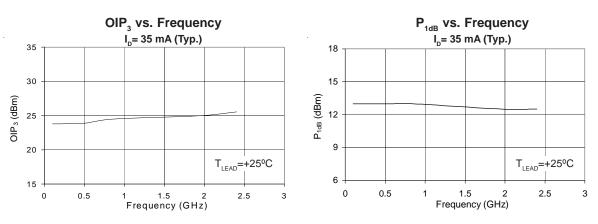
•					
Parameter	Rating	Unit			
Max Device Current (I _D)	70	mA			
Max Device Voltage (V _D)	6	V			
Max RF Input Power	+18	dBm			
Max Junction Temp (T_J)	+150	°C			
Operating Temp Range (T_L)	-40 to +85	°C			
Max Storage Temp	+150	°C			

Operation of this device beyond any one of these limits may cause permanent dam-age. For reliable continuous operation, the device voltage and current must not exceed the maximum operating values specified in the table on page one. Bias Conditions should also satisfy the following expression:

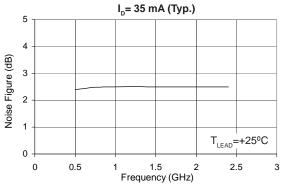
 $I_D V_D < (T_J - T_L) / R_{TH}$, j-l

Typical Performance at Key Operating Frequencies

Caution! ESD sensitive device.

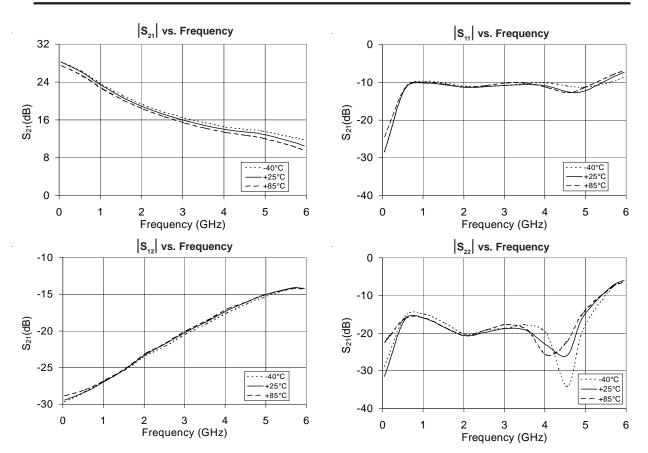

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical perfor-mance or functional operation of the device under Absolute Maximum Rating condi-tions is not implied.

RoHS status based on EUDirective2002/95/EC (at time of this document revision).


The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

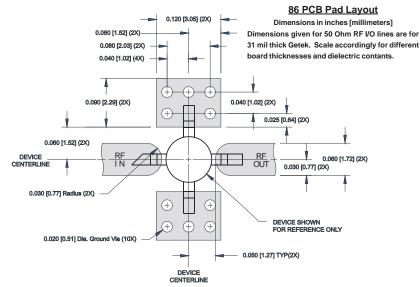
Parameter	Unit	100	500	850	1950	2400	3500
		MHz	MHz	MHz	MHz	MHz	MHz
Small Signal Gain	dB	28.2	27.1	25.0	19.7	18.3	14.8
Output Third Order Intercept Point	dBm	23.8	23.9	24.5	25.0	25.5	
Output Power at 1dB Compression	dBm	13.0	13.0	13.0	12.5	12.5	
Input Return Loss	dB	28.4	12.8	10.7	10.5	11.1	10.6
Output Return Loss	dB	31.5	17.1	15.9	20.5	20.3	18.9
Reverse Isolation	dB	29.4	29.0	28.1	24.1	22.4	19.2
Noise Figure	dB		2.4	2.5	2.5	2.5	

Test Conditions: $I_D = 35 \text{ mA Typ.}$, OIP₃ Tone Spacing=1MHz, P_{OUT} per tone=-5dBm, $R_{BIAS} = 100 \Omega$, $T_L = 25 ^{\circ}$ C, $Z_S = Z_L = 50 \Omega$

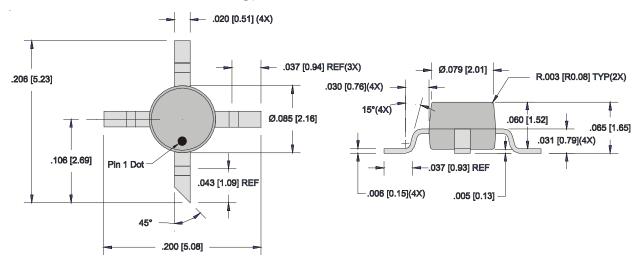


Noise Figure vs. Frequency

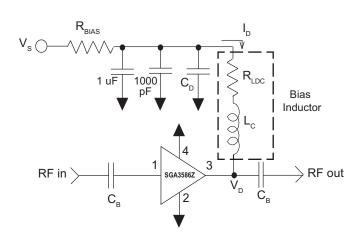
7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical 1336-078-5570 or sales-support@r support, contact RFMD nd co


Typical RF Performance Over Lead Temperature -- Bias: I_D= 35 mA (Typ.) at T_{LEAD} = +25°C

rf	m	d	.c	o	m

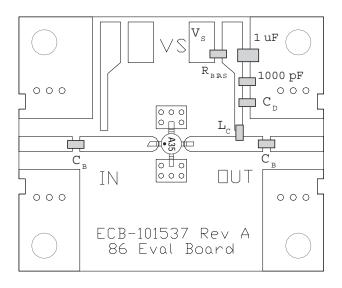

Pin	Function	Description
1	RF IN	RF input pin. This pin requires the use of an external DC-blocking capacitor chosen for the frequency of operation.
2, 4	GND	Connection to ground. For optimum RF performance, use via holes as close to ground leads as possible to reduce lead inductance.
3	RF OUT/BIAS	RF output and bias pin. DC voltage is present on this pin, therefor a DC-blocking capacitor is necessary for proper opera- tion.

Suggested Pad Layout


Package Drawing

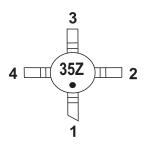
Dimensions in inches (millimeters) Refer to drawing posted at www.rfmd.com for tolerances.

Application Schematic


Application Circuit Element Values								
Reference		Frequency (Mhz)						
Designator	100	500	850	1950	2400	3500		
C _B	1000 pF	220 pF	100 pF	68 pF	56 pF	39 pF		
C _D	100 pF	100 pF	68 pF	22 pF	22 pF	15 pF		
L _c	470 nH	68 nH	33 nH	22 nH	18 nH	15 nH		

Recommended Bias Resistance for I_{p} = 35 mA							
Supply Voltage (V _s) (Volts)	< 5	5	6	7	8	9	10
Bias Resistance* (Ohms)	N/R	50	79	107	136	164	193
* Bias Resistance = R_{pus} + R_{pos} = (V_{p} - V_{p}) / I_{p}							

* Bias Resistance = R_{BIAS} + R_{LDC} = (V_{s} - V_{D}) / I_{D} Select R_{BIAS} so that R_{BIAS} + R_{LDC} ~ the recommended bias resistance. Use 1% or 5 % tolerance resisistors or parallel combinations to attain the recommended bias resistance +/- 3%. R_{BIAS} provides current stability over


temperature. * N/R=Not Recommended. Contact Sirenza technical support for guidance when available supply voltage is less than 5 Volts.

Evaluation Board Layout

Part Identification

Ordering Information

Ordering Code	Description
SGA3586Z	13" Reel with 3000 pieces
SGA3586ZSQ	Sample bag with 25 pieces
SGA3586ZSR	7" Reel with 100 pieces
SGA3586ZPCK1	850MHz, 5V Operation PCBA with 5-piece sample bag

