

SGA-4300 DC-4.5GHZ, CASCADABLE SIGE HBT MMIC

AMPLIFIER Package: Bare Die

Product Description

The SGA-4300 is a high performance SiGe HBT MMIC Amplifier in die form (0.66mmx0.38mm). A Darlington configuration featuring 1 micron emitters provides high F_T and excellent thermal performance. The heterojunction increases breakdown voltage and minimizes leakage current between junctions. Cancellation of emitter junction non-linearities results in high suppression of intermodulation products.

RFMD can provide 100% DC screening, various levels of visual inspection, and Hi-Rel wafer qualification. Die can be delivered at the wafer level, diced or undiced, or picked to gel or waffle packs.

Features

- 50Ω Cascadable Gain Block
- High Gain: 14.6dB Typical at 1950MHz
- High Output IP3: 26.9dBm Typical at 1950MHz
- Low Noise Figure: 3.1dB Typical at 1950MHz
- Low Current Draw: 45 mA Typical
- Single Voltage Supply Operation

Applications

- PA Driver Amp
- RF Pre-Driver and RF Receive Path
- Military Communications
- Test and Instrumentation

Paramotor		Specification	n	Unit	Condition		
Farameter	Min.	Тур.	Max.	Unit	Condition		
Frequency of Operation	DC		4500	MHz			
Small Signal Gain		17.0		dB	Freq=850MHz		
		14.6		dB	Freq=1950MHz		
		13.7		dB	Freq=2400 MHz		
Output Power at 1dB Compression		15.3		dBm	Freq=850MHz		
		13.0		dBm	Freq=1950MHz		
Output IP ₃		28.9		dBm	Freq=850MHz		
		26.9		dBm	Freq=1950MHz		
Input Return Loss		13.2		dB	Freq=1950MHz		
Output Return Loss		15.2		dB	Freq=1950MHz		
Device Operating Voltage	2.9	3.2	3.5	V			
Device Operating Current	41	45	49	mA			
Noise Figure		3.1		dB	Freq=1950MHz		
Thermal Resistance		97		°C/W	Junction to lead (86 pkg.)		

Test Conditions: $Z_0=50\Omega$, $I_D=45$ mA, T=25 °C, $V_S=8V$, $R_{BIAS}=110$. Output IP3 $P_{OUT}/Tone=-5$ dBm with 1MHz tone spacing. Note: Above data for SGA-4386Z packaged part.

7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical support, conta**ct RFMQ or (+ 1) 325,678-5570** or **sales-support@rfmdrcpm**.

Absolute Maximum Ratings

Parameter	Rating	Unit
Total Current (I _D)	90	mA
Device Voltage (V _D)	5	V
Operating Lead Temperature (T_L)	-40 to +85	°C
RF Input Power	+18	dBm
Storage Temperature Range	-55 to +150	°C
Operating Junction Temp (T _J)	+150	°C

Operation of this device beyond any one of these limits may cause permanent damage. For reliable continuous operation, the device voltage and current must not exceed the maximum operating values specified in the table on page one.

Bias Conditions should also satisfy the following expression: $I_D V_D \!<\! (T_J \!-\! T_L) / \, R_{TH}, \, j \!-\! l$

Caution! ESD sensitive device.

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

RoHS status based on EUDirective 2002/95/EC (at time of this document revision).

The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

Typical Performance of SGA-4386Z Packaged Part: V_S =8V, R_{BIAS} =110 Ω , I_D =45mA, T=25°C, Z=50 Ω , Tone	
Spacing=1MHz, P _{OUT} per Tone=-5dBm	

Parameter	Units	100 MHz	500MHz	850MHz	1950 MHz	2400 MHz	3500 MHz
Small Signal Gain	dB	17.9	17.4	17.0	14.6	13.7	11.8
Output 3rd Order Intercept Point	dBm		29.1	28.9	26.9	25.9	
Output Power at 1dB Compression	dBm		14.8	15.3	13.0	11.9	
Input Return Loss	dB	12.5	12.5	12.8	13.2	12.4	10.9
Output Return Loss	dB	10.6	11.4	12.9	15.2	15.2	15.0
Reverse Isolation	dB	21.3	21.5	21.6	20.8	19.9	17.3
Noise Figure	dB		2.8	2.9	3.1	3.4	

SGA-4386 Packaged Part Data (T_{LEAD}=+25°C, V_{DEVICE}=3.2V, I_D=45mA)

0.5

1.0

1.5

Frequency (GHz)

2.0

2.5

3.0

RFMD w

SGA-4386 Packaged Part Data (V_{DEVICE} =3.2V, I_{D} =45mA)

⁷⁶²⁸ Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical support, contact RFMD at (+1) 386-678-5570 or sales-support@rfmd.con

Pad Description

Bond Pad Description

Bond Pad	Function/Description
GND	DC and RF ground returns for the circuit. These pads must be downbonded to system ground.
RF IN	RF input pad. A DC block is required as voltage is present on this pad.
RF OUT	RF output and bias input pad.

Notes:

1. All dimensions in microns [inches] unless otherwise shown.

2. Die Thickness is 203 [0.008].

3. Typical bond pad is 80 (0.003) round.

4. Backside metallization: none.

5. Bond pad metallization: Aluminum.

SGA-4386 Application Circuit Element Values

Reference Designator	Frequency (MHz)						
Nelerence Beelghater	500	850	1950	2400	3500		
CB	220pF	100 pF	68pF	56pF	39pF		
C _D	100pF	68pF	22 pF	22pF	15pF		
L _C	68nH	33nH	22nH	18nH	15nH		

Recommended Bias Resistance for $I_D = 45 \text{ mA}$

Supply Voltage (V _S) (Volts)	<5	6	8	10	12	
Bias Resistance* (Ohms)	N/R	62	110	150	200	
*Bias Resistance=Rpins+Ripc=(Vs-Vi)/ln					

*Bias Resistance= $R_{BIAS} + R_{LDC} = (V_S \cdot V_D) / I_D$ Select R_{BIAS} so that $R_{BIAS} + R_{LDC} \sim$ the recommended bias resistance. Use 1% or 5% tolerance resistors or parallel combinations to attain the recommended bias resistance ±3%. R_{BIAS} provides current stability over temperature. *N/R=Not Recommended. Contact RFMD technical support for guidance when available supply voltage is less than 5V.

Ordering Information

Part Number	Description	Devices/Container
SGA-4300	Bare Die	100