256Mb B-die UtRAM

(16Mb x16) Synchronous Burst Uni-Transistor CMOS RAM (1.7V ~ 1.95V)

datasheet

SAMSUNG ELECTRONICS RESERVES THE RIGHT TO CHANGE PRODUCTS, INFORMATION AND SPECIFICATIONS WITHOUT NOTICE.

Products and specifications discussed herein are for reference purposes only. All information discussed herein is provided on an "AS IS" basis, without warranties of any kind.

This document and all information discussed herein remain the sole and exclusive property of Samsung Electronics. No license of any patent, copyright, mask work, trademark or any other intellectual property right is granted by one party to the other party under this document, by implication, estoppel or otherwise.

Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar applications where product failure could result in loss of life or personal or physical harm, or any military or defense application, or any governmental procurement to which special terms or provisions may apply.

For updates or additional information about Samsung products, contact your nearest Samsung office.

All brand names, trademarks and registered trademarks belong to their respective owners.

© 2010 Samsung Electronics Co., Ltd. All rights reserved.

Revision History

Revision No.	<u>History</u>	Draft Date	<u>Remark</u>	Editor							
0.0	- Preliminary datasheet.	Jan. 12, 2010	Preliminary	J.Y.Bae							
0.5	- Corrected errata.	Feb. 16, 2010	Preliminary	J.Y.Bae							
	- Revised General description.										
	- Deleted Hardware /RESET.										
	- t _{SKEW} : 15 -> 10[ns]										
	- Revised Power Up Sequence timing.										
	- Revised DC and operating characteristics.										
	1. Deleted I _{SPB}										
	- Revised Mode Register Set.										
	- Deleted MRS TIMING WAVEFORM (PS Pin).										
	- Deleted PAR (Partial Array Refresh) mode.										
0.6	- Changed tCSM from 2.5us to 1.7us.	Feb. 25, 2010	Preliminary	J.Y.Bae							
	- Deleted PS pin.										
1.0	- Final datasheet.	Apr. 16, 2010	Final	J.Y.Bae							

Table Of Contents

230MD B-UTE UCKAM	
1.0 GENERAL DESCRIPTION	1
2.0 FEATURES	1
3.0 PRODUCT FAMILY	1
4.0 TERMINOLOGY DESCRIPTION	2
5.0 MODE STATE MACHINE	3
6.0 POWER UP SEQUENCE	3
7.0 ABSOLUTE MAXIMUM RATINGS	4
8.0 RECOMMENDED DC OPERATING CONDITIONS	4
9.0 CAPACITANCE (f=1MHz, TA=25°C)	4
10.0 DC AND OPERATING CHARACTERISTICS	5
11.0 MRS (MODE REGISTER SET)	6
11.1 MRS CODE	6
11.2 MRS TIMING WAVEFORM (SOFTWARE)11.3 Burst Length [A7~A5] & Wrap [A12]	
11.4 WAIT Configuration [A8] & WAIT Polarity [A13]	
11.5 Latency [A11~A9]	9
11.6 Driver Strength [A17~A16]	
12.0 OPEARTION MODE [A15~A14]	
12.1 MODE I. ASTNCHRONOUS READ / ASTNCHRONOUS WRITE MODE	
12.1.2.Asynchronous write operation	10
12.2 MODE3. SYNCHRONOUS BURST READ / SYNCHRONOUS BURST WRITE MODE	
12.2.Synchronous Burst Write Operation	
13.0 MODE 1 AC OPERATING CONDITIONS (ASYNCH. READ / ASYNCH. WRITE)	12
13.1 TIMING WAVEFORMS (ASYNCH. READ / ASYNCH. WRITE)	13
13.1.1.Asynch. READ	
13.1.3.Asynch. WRITE (1)	
13.1.4.Asynch. Byte Write (2)	14
13.1.5.Asynch. Write MASK (3)	
14.0 MODE 3 AC OPERATING CONDITIONS (SYNCH. READ / SYNCH. WRITE)	
14.1 TIMING WAVEFORMS (SYNCH. READ / SYNCH. WRITE)	
14.1.1.Burst READ - Fixed Latency	
14.1.2.Burst READ - Variable Latency	
14.1.4.Burst READ (ADV Interrupt) - Variable Latency	
14.1.5.Burst WRITE	
14.1.6.Burst WRITE (ADV PULSE Interrupt)	
14.1.8.Burst READ followed by Burst WRITE	
14.1.9 Burst WRITE followed by Burst READ	25

16M x 16 bit Synchronous Burst Uni-Transistor CMOS RAM

1.0 GENERAL DESCRIPTION

The world is moving into the mobile multi-media era and therefore the mobile handsets need bigger & faster memory capacity to handle the multi-media data. SAMSUNG's UtRAM products are designed to meet all the request from the various customers who want to cope with the fast growing mobile market. UtRAM is the perfect solution for the mobile market with its low cost, high density and high performance feature. K1B5616BFB is fabricated by SAMSUNG's advanced CMOS technology using one transistor memory cell. The device supports the traditional SRAM like asynchronous operation (asynchronous page read and asynchronous write) and the fully synchronous operation (synchronous burst read and synchronous burst write). These two operation modes are defined through the mode register setting. The device also supports the special feature for the standby power saving. That is internal TCSR (Temperature Compensated Self Refresh). The optimization of output drive strength is possible through the mode register setting to adjust for the different data loadings. Through this drive strength optimization, the device can minimize the noise generated on the data bus during read operation.

2.0 FEATURES

- Process technology: CMOS
 Organization: 16M x 16 bit
- Power supply voltage: 1.7V~1.95V
- Three state outputs
- · Supports MRS (Mode Register Set)
- Software set up
- · Supports power saving modes
- Internal TCSR (Temperature Compensated Self Refresh)
- · Supports driver strength optimization
- K1B5616BFB supports
- Asynchronous read / Asynchronous write
- Synchronous burst read / Synchronous burst write
- · Synchronous burst operation
- Max. clock frequency: 108MHz
- Fixed and Variable read latency
- 4 / 8 / 16 / 32 and Continuous burst
- Wrap / No-wrap
- Latency : 4(Variable) @ 108MHz
 - 4(Variable) @ 104MHz 3(Variable) @ 80MHz
 - 2(Variable) @ 66MHz
- Burst stop
- Burst read suspend
- Burst write data masking

Clk gen. Pre-charge circuit ⊢ Vcc ✓ Vccq <-- Vss Memory ✓ Vssq Array Row Addresses select I/O Circuit Data 1017:01 cont Column Select Data 10[15:8] cont Data Column Address CS Control Logic ŌE WE UB LB WAIT

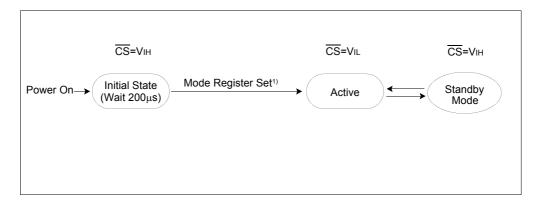
3.0 PRODUCT FAMILY

	Product Family					Current Consumption		
P		Operating Mode ¹⁾	Operating Temp.	Vcc Range	Speed	Standby (ISB1, Max.)	Operating (Icc2P, Max.)	
ŀ	K1B5616BFB-I	Mode 1 Mode 3	Industrial(-25~85°C)	1.7~1.95V	108MHz	TBD < 85°C TBD < 40°C	TBD	

NOTE:

1) Mode1: Asynchronous read / Asynchronous write

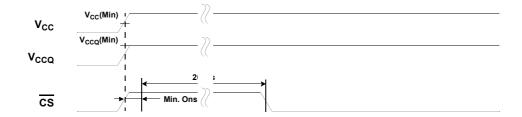
Mode3: Synchronous burst read / Synchronous burst write



4.0 TERMINOLOGY DESCRIPTION

Name	Function	Type	Description		
CLK	Clock	Input	Synchronizes the memory to the system operating frequency during synchronous operations. Commands are referenced to CLK.		
ADV	Address Valid	Input	Indicates that a valid address is present on the address inputs. Addresses can be latched on the rising edge of $\overline{\text{ADV}}$ during asynchronous READ and WRITE operations.		
cs	Chip Select	Input	CS low enables the chip to be active CS high disables the chip and puts it into standby mode.		
ŌE	Output Enable	Input	Enables the output buffers when LOW. when $\overline{\text{OE}}$ is HIGH, the output buffers are disabled.		
WE	Write Enable	Input	WE low enables the chip to start writing the data		
LB	Lower Byte (I/O0~7) Input		_B Lower Byte (I/O0~7) Input		LID (LD) low eachies upper buts (lower buts) to allow data input/output from I/O buffers
UB	Upper Byte (I/O8~15)	Input	UB (LB) low enables upper byte (lower byte) to allow data Input/output from I/O buffers.		
A0~A23	Address0 ~ Address 23	Inniit	Inputs for addresses during READ and WRITE operations. Addresses are internally latched during READ and WRITE cycles.		
I/O0~I/O15	Data Inputs / Outputs	Input/Output	Depending on UB or LB status, word(16-bit, UB & LB low) data, upper byte(8-bit, UB low & LB high) data or lower byte(8-bit, LB low & UB high) data is loaded		
vcc	Voltage Source	Power	Device Power supply. Power supply for device core operation.		
VCCQ	I/O Voltage Source	Power	I/O Power supply. Power supply for input/output buffers.		
vss	Ground Source	GND	Ground for device operation		
VSSQ	I/O Ground Source	GND	Ground for Input/Output buffers		
WAIT	Valid Data Indicator	Output	The WAIT signal is output signal indicating the status of the data on the bus whether or not it is valid. WAIT is asserted when a burst crosses a word-line boundary. WAIT is asserted and should be ignored during asynchronous and page mode operations.		

5.0 MODE STATE MACHINE


NOTE:

1) Refer to MRS(Mode Register Set)

6.0 POWER UP SEQUENCE

After V_{CC} and V_{CCQ} reach minimum operating voltage (1.7V), drive \overline{CS} High first. Before V_{CC} and V_{CCQ} reach minimum voltage (1.7V) drive \overline{PS} High. Then the device gets into the Power Up mode. Wait for minimum 200 µs to get into the normal operation mode. During the Power Up mode, the standby current can not be guaranteed. To get the stable standby current level, at least one cycle of active operation should be implemented regardless of wait time duration. To get the appropriate device operation, be sure to keep the following power up sequence.

Mode1 (Asynchronous read/ Asynchronous write) is set up after power up, but this mode is not always guaranteed.

7.0 ABSOLUTE MAXIMUM RATINGS

Item	Symbol	Ratings	Unit
Voltage on any pin relative to Vss	V _{IN} , V _{OUT}	-0.2 to V _{CCQ} +0.3V	V
Power supply voltage relative to Vss	V _{CC} , V _{CCQ}	-0.2 to 2.5V	V
Power Dissipation	P _D	1.0	W
Storage temperature	T _{STG}	-55 to +150	°C
Operating Temperature	T _A	-25 to 85	°C

NOTE .

8.0 RECOMMENDED DC OPERATING CONDITIONS

Item	Symbol	Min Typ		Max	Unit	
Power supply voltage(Core)	V _{CC}	1.7	1.8	1.95	V	
Power supply voltage(I/O)	V _{CCQ}	1.7	1.8	1.95	V	
Ground	V_{SS}, V_{SSQ}	0	0	0	V	
Input high voltage	V _{IH}	0.8 x V _{CCQ}	-	V _{CCQ} +0.2 ²⁾	V	
Input low voltage	V _{IL}	-0.2 ³⁾	-	0.4	V	

NOTE:

- 1) TA=-25 to 85°C, otherwise specified.
- 2) Overshoot: Vccq +1.0V in case of pulse width ≤20ns. Overshoot is sampled, not 100% tested.
- 3) Undershoot: -1.0V in case of pulse width \leq 20ns. Undershoot is sampled, not 100% tested.

9.0 CAPACITANCE (f=1MHz, TA=25°C)

Item	Symbol	Test Condition	Min	Max	Unit
Input capacitance	C _{IN}	V _{IN} =0V	-	6	pF
Input/Output capacitance	C _{IO}	V _{IO} =0V	-	6	pF

¹⁾ Stresses greater than "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation should be restricted to be used under recommended operating condition. Exposure to absolute maximum rating conditions longer than 1 second may affect reliability.

10.0 DC AND OPERATING CHARACTERISTICS

Item	Symbol	Test Conditions		Min	Тур	Max	Unit
Input Leakage Current	ILI	V _{IN} =V _{SS} to V _{CCQ}		-2	-	2	μА
Output Leakage Current	I _{LO}	CS=V _{IH} , OE=V _{IH} or WE=V _{IL} , V _{IO} =V _{SS} to V _{CCQ}		-5	-	5	μА
Average Operating Current(Async) 7)	I _{CC2}	Cycle time=min t_{RC} /min t_{WC} , I_{IO} =0mA ⁴⁾ , 100% duty. V_{IH}	$\overline{\text{CS}}$ =V _{IL} , V _{IN} =V _{IL} or	-	-	35	mA
Current(Async)	I _{CC2P}	Cycle time=t _{RC} +3t _{PC} , I _{IO} =0mA ⁴⁾ , 100% duty, CS =V	$_{\rm IL}$, $V_{\rm IN}$ = $V_{\rm IL}$ or $V_{\rm IH}$	-	-	25	mA
Average Operating Current(Sync) 7)	I _{CC3}	$\frac{\text{Burst Length 4, Latency 5, 80MHz, I}_{\text{IO}}\text{=}0\text{mA}^{4)}, \text{Addr}}{\text{CS}}\text{=}V_{\text{IL}}, V_{\text{IN}}\text{=}V_{\text{IL}} \text{ or } V_{\text{IH}}$	ress transition 1 time,	-	-	35	mA
Output Low Voltage	V _{OL}	I _{OL} =0.1mA		-	-	0.2	V
Output High Voltage	V _{OH}	I _{OH} =-0.1mA	1.4	-	-	V	
Standby Current(CMOS)	I _{SB1} 1)	CS≥V _{CCQ} -0.2V, PS≥V _{CCQ} -0.2V, Other inputs=V _{SS}	< 40°C	-	-	200	μΑ
Standby Current(CMOS)	'SB1 7	or V _{CCQ} (Toggle is not allowed) ⁵⁾	< 85°C	1	1	350	μΑ

- NOTE:

 1) ISB1 is measured after 60ms after $\overline{\text{CS}}$ high. CLK should be fixed at high or at Low.

 2) Full Array Partial Refresh Current(ISBP) is same as Standby Current(ISB1).

 3) Internal TCSR (Temperature Compensated Self Refresh) is used to optimize refresh cycle.

 4) I_{IO}=0mA; This parameter is specified with the outputs disabled to avoid external loading effects.
- 5) V_{IN}=0V; all inputs should not be toggle.
- 6) Clock should not be inserted between ADV low and WE low during Write operation.
 7) When testing, this current is measured using Read and Write timing which portion is 50:50.

11.0 MRS (MODE REGISTER SET)

The mode registers store the values for the various modes to make UtRAM suitable for a various applications through MRS. There are two ways to perform MRS. One is \overline{PS} pin MRS and the other is Software MRS. The mode registers have lots of fields and each field consists of several options. Refer to the Table below for detailed Mode Register Setting. A19~A23 addresses Should be "0" in Mode Register Setting.

11.1 MRS CODE

MRS code consists of 12 categories and several options in each category. BL, WC, Latency, Wrap, WP, MS and IL are related to bus operation and DS is related to device output impedance.

[Table 1] Mode Register Setting according to field of function

Address	A18	A17~A16	A15~A14	A13	A12	A11~A9	A8	A7~A5	А3	A2	A1~A0
Function	IL	DS	MS	WP	Wrap	Latency	WC	BL			

	Initial Latency Driver Strength					Mode Select			
A18	IL	A17	A16	DS	A15	A14	MS ¹⁾		
0	Fixed	0	0	Full Drive	0	0	Mode 1(Async. 4 Page Read / Async. Write)		
1	Variable	0	1	1/2 Drive 1 0 Mode 3(Sync. Burst Read / Sync. B		Mode 3(Sync. Burst Read / Sync. Burst Write)			
		1	0	1/4 Drive					

WAIT Polarity Wrap			Wrap	Latency Count				Wai	t Configuration		Burst Length			
A13	WP¹)	A12	Wrap	A11	A10	A9	Latency	A8	wc	A 7	A6	A5	BL	
0	Low Enable	0	Wrap	1	0	0	2	0	One clock prior	0	1	0	4 word	
1	High Enable	1	No-Wrap	0	0	0	3	1	At data	0	1	1	8 word	
				0	0	1	4			1	0	0	16 word	
				0	1	0	5			1	0	1	32 word	
				0	1	1	Reserve			1	1	1	Continuous ²⁾	
				1	0	1	7							
				1	1	0	Reserve							

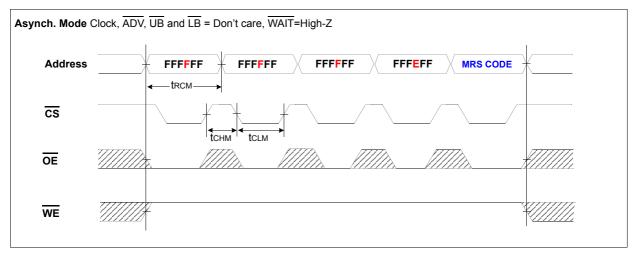
1 Reserve

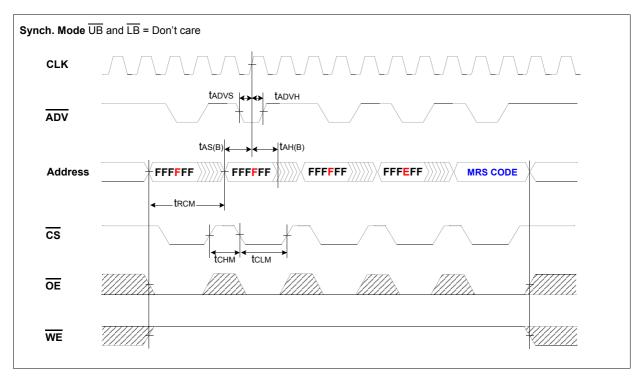
NOTE:

- A4, A19 ~ A23 should be '0'
- The default modes are set automatically after power up.
- * Default modes: Async. Read and Async. Write / PAR disable, 1/2 Drive Strength
- Mode Change Rules.

Mode1 to Mode3: 1 dummy write(to any address with any data) is necessary before setting Mode3

- * Dummy write: Dummy write timing is just the same with normal write timing. It is necessary because 'Late write' is applied to Asynchronous write as in Mode1.
- * Late write: The data that is latched in previous write cycle is written in the address that is also latched in previous write cycle when Write starts. And current data and address are latched when Write ends. (WE high or CS high, whichever comes first)


Mode3 to Mode1: 1 dummy write is necessary before setting Mode1


- * Dummy write: The data and the address should be the same with those which are used during Mode1 to Mode3 transition.
- 1) WP[0]; The data is available when WAIT signal is High. All the timings in this spec are illustrated based on this mode. WP[1]; The data is available when WAIT signal is Low.
- 2) Refresh command will be denied during continuous operation. CS low should not be longer than t_{CSM}(max 1.7us)
 The continuous mode [A7:A6:A5 =111] must be set with No-Wrap mode [A12=1].

11.2 MRS TIMING WAVEFORM (SOFTWARE)

Software MRS timing consists of 5 Read cycles. 5 Read cycles should be operated in a row. Each cycle is normal Read cycle. $\overline{\text{CS}}$ pin should be toggling between cycles. 1st, 2nd and 3rd cycle should be FFFFFf(h), 4th cycle should be FFFFFf(h) and 5th cycle should be MRS code

NOTE:

1) Above timing and address condition should not be used in the normal operation. The above condition should be used only for the mode register setting purpose.

[Table 2] AC CHARACTERISTICS

Parameter List	Symbol	Min	Max	Units	Parameter List	Symbol	Min	Max	Units
ADV setup time to clock	t _{ADVS}	3	-	ns	Read cycle time	t _{RCM}	70	-	ns
ADV hold time from clock	t _{ADVH}	2	-	ns	CS high time	t _{CHM}	10	-	ns
Address setup time to clock	t _{AS(B)}	3	-	ns	CS low time	t _{CLM}	60	-	ns
Address hold time from clock	t _{AH(B)}	2	-	ns					

11.3 Burst Length [A7~A5] & Wrap [A12]


The device supports 4 word, 8 word, 16 word, 32 word and Continuous burst read or write. and Wrap & No-Wrap are supported for Burst sequence.

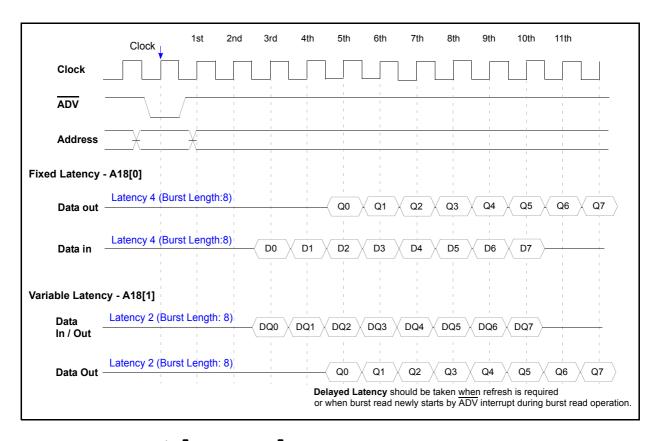
				Burst Address Sequence(Decimal)	
Mode	Start	4 word	8 word	16 word	32 word
	0	0-1-2-3	0-1-2-3-4-5-6-7	0-1-2-3-4-5-6-7-8-9-10-11-12-13-14-15	0 - 1 - 2 - 3 - 4 - 5 ~ 26-27-28-29-30-31
	1	1-2-3-0	1-2-3-4-5-6-7-0	1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-0	1 - 2 - 3 - 4 - 5 - 6 ~ 27-28-29-30-31 - 0
	2	2-3-0-1	2-3-4-5-6-7-0-1	2-3-4-5-6-7-8-9-10-11-12-13-14-15-0-1	2 - 3 - 4 - 5 - 6 - 7 ~ 28-29-30-31 - 0 - 1
	3	3-0-1-2	3-4-5-6-7-0-1-2	3-4-5-6-7-8-9-10-11-12-13-14-15-0-1-2	3 - 4 - 5 - 6 - 7 - 8 ~ 29-30-31- 0 - 1 - 2
WRAP	~		~	~	~
WIXAF	7		7-0-1-2-3-4-5-6	7-8-9-10-11-12-13-14-15-0-1-2-3-4-5-6	7 - 8 - 9 - 10- 11- 12 ~ 2 - 3 - 4 - 5 - 6
	~			~	~
	15			15-0-1-2-3-4-5-6-7-8-9-10-11-12-13-14	15-16-17-18-19-20 ~ 10- 11- 12- 13- 14
	~				~
	31				31-0-1-2-3-4~25-26-27-28-29-30
	0	0-1-2-3	0- 1- 2- 3- 4- 5- 6 -7	0- 1- 2- 3- 4- 5- 6- 7- 8- 9- 10- 11- 12-13-14-15	0 - 1 - 2 - 3 - 4 - 5 ~ 26-27-28-29-30-31
	1	1-2-3-4	1- 2- 3- 4- 5- 6- 7- 8	1- 2- 3- 4- 5- 6- 7- 8- 9- 10- 11- 12-13-14-15-16	1 - 2 - 3 - 4 - 5 - 6 ~ 27-28-29-30-31-32
	2	2-3-4-5	2- 3- 4- 5- 6- 7- 8- 9	2- 3- 4- 5- 6- 7- 8- 9- 10- 11- 12-13-14-15-16-17	2 - 3 - 4 - 5 - 6 - 7 ~ 28-29-30-31-32-33
	3	3-4-5-6	3- 4- 5- 6- 7- 8- 9-10	3- 4- 5- 6- 7- 8- 9- 10- 11- 12-13-14-15-16-17-18	3 - 4 - 5 - 6 - 7 - 8 ~ 29-30-31-32-33-34
No-	~		~	~	~
WRAP	7		7-8-9-10-11-12-13-14	7-8-9-10-11-12-13-14-15-16-17-18-19-20-21-22	7 - 8 - 9 - 10-11-12 ~ 33-34-35-36-37-38
	~			~	~
	15			15-16-17-18-19-20-21-22-23-24-25-26-27-28-29-30	15-16-17-18-19-20 ~ 41-42-43-44-45-46
	~				~
	31				31-32-33-34-35-36 ~ 57-58-59-60-61-62

NOTE:

11.4 $\overline{\text{WAIT}}$ Configuration [A8] & $\overline{\text{WAIT}}$ Polarity [A13]

The $\overline{\text{WAIT}}$ signal is output signal indicating the status of the data on the bus whether or not it is valid. $\overline{\text{WAIT}}$ configuration is to decide the timing when $\overline{\text{WAIT}}$ asserts or desserts. $\overline{\text{WAIT}}$ asserts (or desserts) one clock prior to the data when A8 is set to 0. ($\overline{\text{WAIT}}$ asserts (or desserts) at data clock when A8 is set to 1). $\overline{\text{WAIT}}$ polarity is to decide the $\overline{\text{WAIT}}$ signal level at which data is valid or invalid. Data is valid if $\overline{\text{WAIT}}$ signal is high when A13 is set to 0. (Data is valid if $\overline{\text{WAIT}}$ signal is low when A13 is set to 1). All the timing diagrams in this SPEC are illustrated based on following setup; [A13:0] and [A8:0]. Below timing shows $\overline{\text{WAIT}}$ signal's movement when word boundary crossing happens in No-wrap mode.

¹⁾ Continuous Burst mode needs to meet t_{CSM} (max. 1.7us) parameter.


11.5 Latency [A11~A9]

The Latency stands for the number of clocks before the first data available from the burst command.

Item	Upto (66MHz	Upto 8	BOMHz	Upto 1	04MHz	Upto 108MHz		
Item	Fixed	Variable	Fixed	Variable	Fixed	Variable	Fixed	Variable	
Latency Set(A11:A10:A9)	4(0:0:1)	2(1:0:0)	5(0:1:0)	3(0:0:0)	7(1:0:1)	4(0:0:1)	7(1:0:1)	4(0:0:1)	
Read Latency(min)	4	2 / 4 ¹⁾	5	3 / 5 ¹⁾	7	4 / 7 ¹⁾	7	4 / 7 ¹⁾	
1st Read data fetch clock	5th	3rd / 5th ¹⁾	6th	4th / 6th ¹⁾	8th	5th / 8th ¹⁾	8th	5th / 8th ¹⁾	
Write Latency(min)	2	2	3	3	4	4	4	4	
1st Write data loading clock	3rd	3rd	4th	4th	5th	5th	5th	5th	

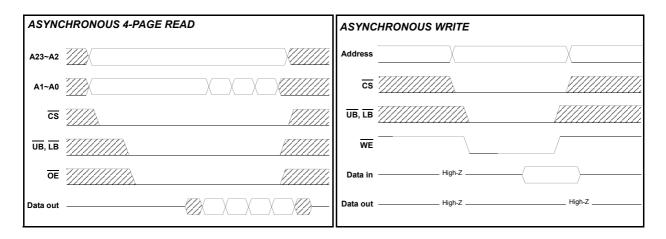
NOTE:

¹⁾ **Delayed Latency** should be taken when refresh is required or when burst read newly starts by $\overline{\text{ADV}}$ interrupt during burst read operation.

11.6 Driver Strength [A17~A16]

The optimization of output driver strength is possible to adjust for the different data loadings. The device can minimize the noise generated on the data bus during read operation. The device supports full, 1/2 and 1/4 driver strength. The device's default mode is 1/2 driver strength.

Driver Strength	Full	1/2	1 / 4
Recommendation	CL 30 ~ 50pF	CL 15 ~ 30pF	CL 15pF or lower


12.0 OPEARTION MODE [A15~A14] 12.1 MODE1. ASYNCHRONOUS READ / ASYNCHRONOUS WRITE MODE

12.1.1. Asynchronous read operation

Asynchronous read operation starts when \overline{CS} , \overline{OE} and \overline{UB} or \overline{LB} are asserted. First data come out after random access time(tAA) but second, third and fourth data come out after page access time(tPA) when using the page addresses (A0, A1). \overline{PS} and \overline{WE} should be de-asserted during read operation. Clock, \overline{ADV} are don't care during read operation and \overline{WAIT} is Hi-Z.

12.1.2. Asynchronous write operation

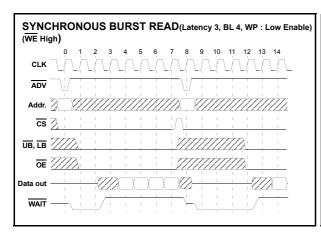
Asynchronous write operation starts when \overline{CS} , \overline{WE} and \overline{UB} or \overline{LB} are asserted. \overline{PS} and should be de-asserted during write operation. Clock, \overline{OE} , \overline{ADV} are don't care during write operation and \overline{WAIT} signal is Hi-Z.

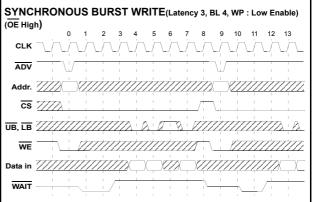
[Table 3] FUNCTIONAL DESCRIPTION

CS	OE	WE	LB	UB	I/O0~7	I/O8~15	Mode	Power
Н	X1 ⁾	X1)	X1)	X1)	High-Z	High-Z	Deselected	Standby
Н	X ¹⁾	X ¹⁾	X ¹⁾	X ¹⁾	High-Z	High-Z	Deselected	PAR
L	Н	Н	X ¹⁾	X ¹⁾	High-Z	High-Z	Output Disabled	Active
L	X ¹⁾	X ¹⁾	Η	Н	High-Z	High-Z	Output Disabled	Active
L	L	Н	L	Н	Dout	High-Z	Lower Byte Read	Active
L	L	Н	Н	L	High-Z	Dout	Upper Byte Read	Active
L	L	Н	L	L	Dout	Dout	Word Read	Active
L	Н	L	L	Н	Din High-Z Lower By		Lower Byte Write	Active
L	Н	L	Н	L	High-Z	Din	Upper Byte Write	Active
L	Н	L	L	L	Din	Din	Word Write	Active

NOTE

- 1) X means "Don't care". X should be \underline{low} or high state.
- 2) In asynchronous mode, Clock and ADV are ignored. Clock and ADV should be low or high state.
- 3) /WAIT pin is High-Z in Asynchronous mode.




12.2 MODE3. SYNCHRONOUS BURST READ / SYNCHRONOUS BURST WRITE MODE 12.2.1. Synchronous Burst Read Operation

Burst Read command is implemented when \overline{ADV} is detected low at clock rising edge. \overline{WE} should be de-asserted during Burst read, Burst Read operation re-starts whenever \overline{ADV} is detected low at clock rising edge even in the middle of Burst Read operation. Variable latency allows the UtRAM to be configured for minimum latency at high frequencies, but the controller must monitor \overline{WAIT} to detect any conflict with refresh cycles.

12.2.2. Synchronous Burst Write Operation

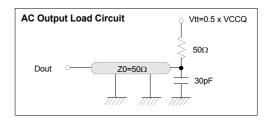
Burst Write command is implemented when $\overline{\text{ADV}}$ & $\overline{\text{WE}}$ are detected low at clock rising edge. Burst Write operation re-starts whenever $\overline{\text{ADV}}$ is detected low at clock rising edge even in the middle of Burst Write operation. Write operations always use fixed latency.

[Table 4] FUNCTIONAL DESCRIPTION

cs	OE	WE	LB	UB	I/O0~7	I/O8~15	CLK	ADV	Mode	Power
Н	X1)	X1)	X ¹⁾	X ¹⁾	High-Z	High-Z	X ¹⁾	X ¹⁾	Deselected	Standby
Н	X ¹⁾	X ¹⁾	X ¹⁾	X ¹⁾	High-Z	High-Z	X ¹⁾	X ¹⁾	Deselected	PAR
L	Н	Н	X ¹⁾	X ¹⁾	High-Z	High-Z	X ¹⁾	Н	Output Disabled	Active
L	X ¹⁾	X ¹⁾	Н	Н	High-Z	High-Z	X ¹⁾	Н	Output Disabled	Active
L	X ¹⁾	Н	X ¹⁾	X ¹⁾	High-Z	High-Z	4	5	Read Command	Active
L	L	Н	L	Н	Dout	High-Z	5	Н	Lower Byte Read	Active
L	L	Н	Н	L	High-Z	Dout	4	Н	Upper Byte Read	Active
L	L	Н	L	L	Dout	Dout	4	Н	Word Read	Active
L	X ¹⁾	L	X ¹⁾	X ¹⁾	High-Z	High-Z	4	7	Write Command	Active
L	Н	X ¹⁾	L	Н	Din	High-Z		Н	Lower Byte Write	Active
L	Н	X ¹⁾	Н	L	High-Z	Din	_ н		Upper Byte Write	Active
L	Н	X ¹⁾	L	L	Din	Din	4	Н	Word Write	Active
L	Н	L	L	L	High-Z	High-Z			Mode Register Set	Active

NOTE

1) X means "Don't care". X should be low or high state.


^{2) //}WAIT is device output signal so does not have any affect to the mode definition. Please refer to each timing diagram for //WAIT pin function.

13.0 MODE 1 AC OPERATING CONDITIONS (ASYNCH. READ / ASYNCH. WRITE)

TEST CONDITIONS

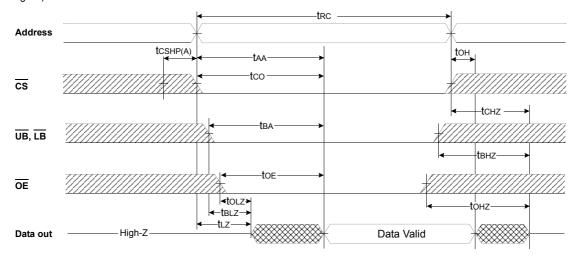
(Test Load and Test Input/Output Reference)
Input pulse level: 0.2 to Vccq-0.2V
Input rising and falling time: 3ns
Input and output reference voltage: 0.5 x Vccq

Output load: CL=30pF Vcc:1.7V~1.95V TA: -25°C~85°C

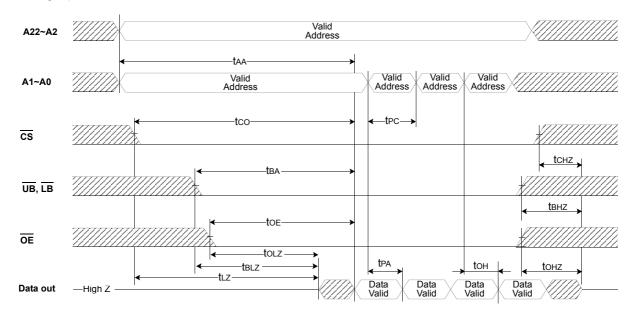
[Table 5] AC CHARACTERISTICS

	Parameter List	Symbol	Sp	eed	Units
	Farameter List	Symbol	Min	Max	Ullits
Common	CS High Pulse Width 1)	t _{CSHP(A)}	10	-	ns
	Read Cycle Time	t _{RC}	70	-	ns
	Page Read Cycle Time	t _{PC}	20	-	ns
	Address Access Time	t _{AA}	-	70	ns
	Page Access Time	t _{PA}	-	20	ns
	Chip Select to Output	t _{CO}	-	70	ns
	Output Enable to Valid Output	t _{OE}	-	20	ns
Asynch.	UB, LB Access Time	t _{BA}	-	20	ns
Read	Chip Select to Low-Z Output	t_{LZ}	10	-	ns
	UB, LB Enable to Low-Z Output	t _{BLZ}	5	-	ns
	Output Enable to Low-Z Output	t _{OLZ}	5	-	ns
	Chip Disable to High-Z Output	t _{CHZ}	0	10	ns
	UB, LB Disable to High-Z Output	t _{BHZ}	0	10	ns
	Output Disable to High-Z Output	t _{OHZ}	0	10	ns
	Output Hold	t _{OH}	5	-	ns
	Write Cycle Time	t _{WC}	70	-	ns
	Chip Select to End of Write	t _{CW}	60	-	ns
	Address Set-up Time to Beginning of Write	t _{AS}	0	-	ns
	Address Valid to End of Write	t _{AW}	60	-	ns
	UB, LB Valid to End of Write	t _{BW}	60	-	ns
Asynch.	Write Pulse Width	t _{WP}	55	-	ns
Write	WE High Pulse Width	t _{WHP}	5	-	ns
	Write Recovery Time	t _{WR}	0	-	ns
	Data to Write Time Overlap	t _{DW}	20	-	ns
	Data Hold from Write Time	t _{DH}	0	-	ns
	UB, LB valid or mask setup time to beginning of write	t _{BSA}	0	-	ns
	UB, LB valid or mask hold time to end of write	t _{BHA}	0	-	ns
Refresh	Maximum CS Low Pulse Width	t _{CSM}	-	1700	ns
170116911	Address skew	t _{SKEW}	-	10	ns

NOTE:


- 1) A refresh opportunity must be provided every $\underline{t_{CSM}}$. A refresh opportunity is satisfied by the condition : \overline{CS} high for longer than 15ns (t_{CSHP} > 15ns). \overline{CS} must not remain LOW longer than t_{CSM} (1.7us)
- 2) The High-Z timings measure a 100mV transition from either VOH or VOL toward VCCQ x 0.5
- 3) The Low-Z timings measure a 100mV transition away from the High-Z level toward either VOH or VOL.
- 4) A Invalid skew window is not allowed for longer than 15ns.

13.1 TIMING WAVEFORMS (ASYNCH. READ / ASYNCH. WRITE)


13.1.1. Asynch. READ

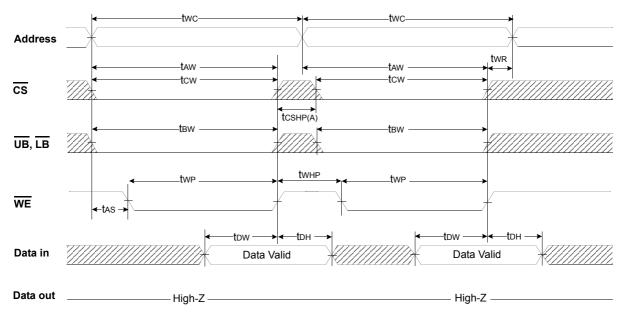
(WE=VIH, WAIT=High-Z)

13.1.2. Asynch. PAGE READ

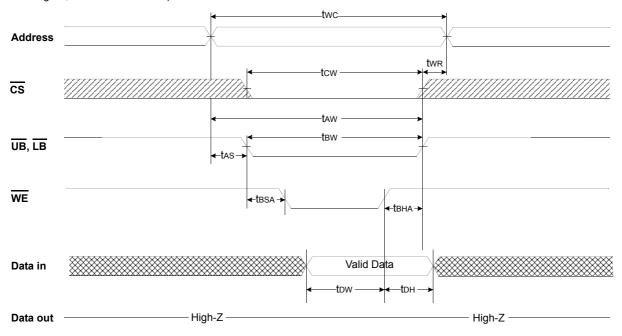
(WE=VIH, WAIT=High-Z)

- 1) tCHZ and tOHZ are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage levels.

- 2) At any given temperature and voltage condition, tcHz(Max.) is less than tLz(Min.) both for a given device and from device to device interconnection.


 3) In asynchronous read cycle, Clock and ADV signals are ignored.

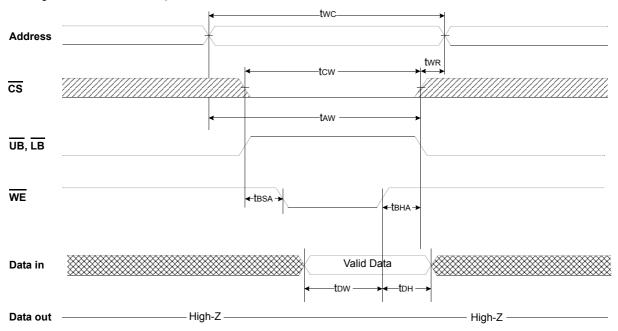
 4) If invalid address signals shorter than min. tRC are continuously repeated for over 1.7us, the device needs a normal read timing(tRC) or needs to sustain standby state for min. tRC at least once in every 1.7us.
- 5) A reresh opportunity must be provided every $\underline{t_{CSM}}$. A refresh opportunity is satisfied by the condition : \overline{CS} high for longer than 15ns ($\underline{t_{CSHP}} > 15$ ns). \overline{CS} must not remain LOW longer than $\underline{t_{CSM}}$ (1.7us)
- 6) In asynchronous 4 page read cycle, Clock and ADV signals are ignored.


13.1.3. Asynch. WRITE (1)

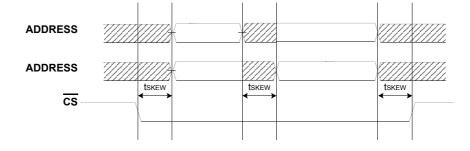
(OE=VIH, WAIT=High-Z, WE Controlled)

13.1.4. Asynch. Byte Write (2)

(OE=VIH, WAIT=High-Z, UB & LB Controlled)


NOTE:

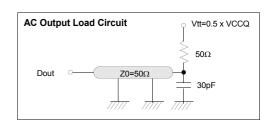
- 1) A write occurs during the overlap(twp) of low \overline{CS} and low \overline{WE} . A write begins when \overline{CS} goes low and \overline{WE} goes low with asserting \overline{UB} or \overline{LB} for single byte operation or simultaneously asserting \overline{UB} and \overline{LB} for double byte operation. A write ends at the earliest transition when \overline{CS} goes high or \overline{WE} goes high. The twp is measured from the beginning of write to the end of write.
- 2) tow is measured from the CS going low to the end of write.
- 3) tas is measured from the address valid to the beginning of write.
- 4) twr is measured from the end of write to the address change. twr is applied in case a write ends with $\overline{\text{CS}}$ or $\overline{\text{WE}}$ going high.
- 5) In asynchronous write cycle, Clock and ADV signals are ignored.
- 6) $\underline{\text{A reresh}}$ opportunity must be provided every $\underline{\text{t}_{CSM}}$. A refresh opportunity is satisfied by the condition :
 - $\overline{\text{CS}}$ high for longer than 15ns (t_{CSHP} > 15ns). $\overline{\text{CS}}$ must not remain LOW longer than t_{CSM} (1.7us)



13.1.5. Asynch. Write MASK (3)

(OE=VIH, WAIT=High-Z, UB & LB Controlled)

13.1.6. Address Skew for Asynchronous Operation



14.0 MODE 3 AC OPERATING CONDITIONS (SYNCH. READ / SYNCH. WRITE)

TEST CONDITIONS

(Test Load and Test Input/Output Reference) Input pulse level: 0.2 to Vcc-0.2V Input rising and falling time: 1ns Input and output reference voltage: 0.5 x Vcc Output load: CL=30pF Vcc:1.7V~1.95V

Vcc:1.7V~1.95V Ta: -25°C~85°C

ITable 61 AC CHARACTERISTICS

	Parameter List	Symbol	66N	ИHz	801	ИHz	104	MHz	108	MHz	Units
	Farameter List	Syllibol	Min	Max	Min	Max	Min	Max	Min	Max	Ullits
	Clock Cycle Time	Т	15	200	12.5	200	9.6	200	9.26	200	ns
	Maximum CS Low Pulse Width	t _{CSM}	-	1700	-	1700	-	1700	-	1700	ns
	Address Set-up Time to clock	t _{AS(B)}	3	-	3	-	3	-	3	-	ns
	Address Hold Time from clock	t _{AH(B)}	2	-	2	-	2	-	2	-	ns
	ADV Setup Time to clock	t _{ADVS}	3	-	3	-	3	-	3	-	ns
Burst	ADV Hold Time from clock	t _{ADVH}	2	-	2	-	2	-	2	-	ns
Operation	CS Setup Time to clock	t _{CSS(B)}	3	-	3	-	3	-	3	-	ns
(Common)	Burst STOP clock to New ADV Low	t _{BSADV}	0	-	0	-	0	-	0	-	ns
	CS Low Hold Time from Clock(Burst Stop)	t _{CSLH}	2	-	2	-	2	-	2	-	ns
	CS High Pulse Width ¹⁾	t _{CSHP}	5	-	5	-	5	-	5	-	ns
•	CS Low to WAIT Low	t_{WL}	-	12	-	12	-	12	-	12	ns
	Clock to WAIT High	t _{WH}	-	11	-	9	-	7	-	7	ns
•	CS High to WAIT High-Z	t _{WZ}	-	10	-	10	-	10	-	10	ns
	UB, LB Low to End of Latency Clock	t _{BEL}	20	-	20	-	20	-	20	-	ns
	OE Low to End of Latency Clock	t _{OEL}	20	-	20	-	20	-	20	-	ns
	UB, LB Low to Low-Z Output	t _{BLZ}	5	-	5	-	5	-	5	-	ns
•	OE Low to Low-Z Output	t _{OLZ}	5	-	5	-	5	-	5	-	ns
Burst Read	Clock Rising to Data Output	t _{CD}	-	11	-	9	-	7	-	7	ns
Operation	Output Hold from clock	t _{OH(B)}	2	-	2	-	2	-	2	-	ns
	ADV interrupt Clock to Output High-Z	t_{HZ}	-	10	-	10	-	10	-	10	ns
	CS High to Output High-Z	t _{CHZ}	-	10	-	10	-	10	-	10	ns
	OE High to Output High-Z	t _{OHZ}	-	10	-	10	-	10	-	10	ns
	UB, LB High to Output High-Z	t _{BHZ}	-	10	-	10	-	10	-	10	ns

NOTE:

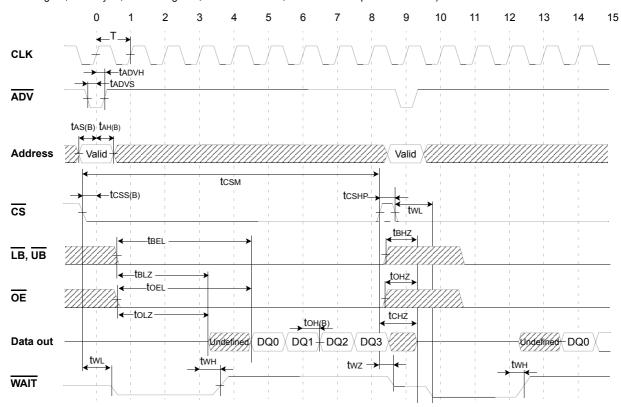
1) Refresh can not be implemented when tBSADV is in the range of Ons ~ 13ns. It may cause Refresh fail to use the device under that condition over 1.7us without CS tog-gling. To avoid Refresh fail, 13ns for all frequency is needed for tBSADV and CS must reimain High longer than 15ns (t_{CSHP} > 15ns).

³⁾ The Low-Z timings measure a 100mV transition away from the High-Z level toward either VOH or VOL.

	WE Set-up Time to Clock	t _{WES}	3	-	3	-	3	-	ns
	WE Hold Time from Clock	t _{WEH}	2	-	2	-	2	-	ns
	UB, LB Set-up Time to Clock	t _{BS}	3	-	3	-	3	-	ns
Dt Marita	Burst End clock to New ADV Low	t _{BEADV}	0	-	0	-	0	-	ns
Burst Write Operation	UB, LB Hold Time from Clock	t _{BH}	2	-	2	-	2	-	ns
	Byte Masking Set-up Time to Clock	t _{BMS}	3	-	3	-	3	-	ns
	Byte Masking Hold Time from Clock	t _{BMH}	2	-	2	-	2	-	ns
	Write Data Set-up Time to Clock	t _{DS}	3	-	3	-	3	-	ns
	Write Data Hold Time from Clock	t _{DHC}	2	-	2	-	2	-	ns

NOTE

1) Refresh can not be implemented when tBEADV is in the range of 0ns ~ 13ns. It may cause Refresh fail to use the device under that condition over 1.7us without CS tog-gling. To avoid Refresh fail, 13ns for all frequency is needed for tBEADV and CS must reimain High longer than 15ns (t_{CSHP} > 15ns).



²⁾ The High-Z timings measure a 100mV transition from either VOH or VOL toward VCCQ x 0.5

14.1 TIMING WAVEFORMS (SYNCH. READ / SYNCH. WRITE)

14.1.1. Burst READ - Fixed Latency

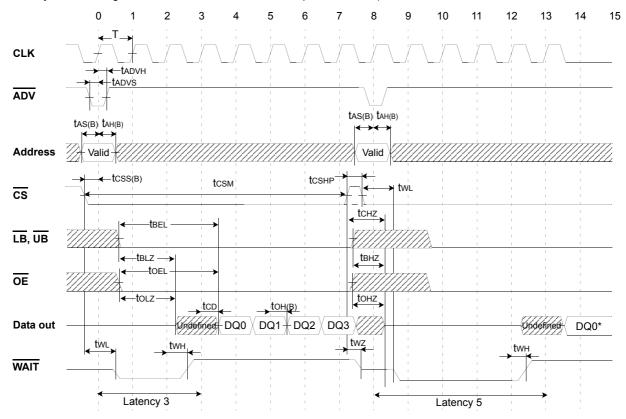
(WE=VIH, WAIT=High-Z, Latency=4, Burst Length=4, WP=Low enable, WC=one clock prior to the data)

NOTE:

- 1) /WAIT Low(tWL) : Data not available(driven by $\overline{\text{CS}}$ low going edge or $\overline{\text{ADV}}$ low going edge) /WAIT High(tWH): Data available(driven by Latency-1 clock)
 /WAIT High-Z(tWZ): Data don't care(driven by CS high going edge)
- 2) Multiple clock risings are not allowed during low ADV period.
 3) Burst operation should not be longer than (t_{CSM}) 1.7us and CS must remain High longer than 15ns to avoid refresh fail.

ITable 71 AC CHARACTERISTICS

	661	ИНz	801	ИHz	104	MHz	108	MHz			661	ИHz	801	ИHz	108	MHz	
Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Units	Symbol	Min	Max	Min	Max	Min	Max	Units
Т	15	200	12.5	200	9.6	200	9.26	200	ns	t _{BLZ}	5	-	5	-	5	-	ns
t _{CSM} 1)	-	1700	-	1700	-	1700	-	1700	ns	t _{OLZ}	5	-	5	-	5	-	ns
t _{ADVS}	3	-	3	-	3	-	3	-	ns	t _{CHZ}	-	10	-	10	-	10	ns
t _{ADVH}	2	-	2	-	2	-	2	-	ns	t _{OHZ}	-	10	-	10	-	10	ns
t _{AS(B)}	3	-	3	-	3	-	3	-	ns	t _{BHZ}	-	10	-	10	-	10	ns
t _{AH(B)}	2	-	2	-	2	-	2	-	ns	t _{CD}	-	11	-	9	-	7	ns
t _{CSS(B)}	3	-	3	-	3	-	3	-	ns	t _{OH(B)}	2	-	2	-	2	-	ns
t _{CSHP} 1)	5	-	5	-	5	-	5	-	ns	t _{WL}	-	12	-	12	-	12	ns
t _{BEL}	20	-	20	-	20	-	20	-	ns	t _{WH}	-	11	-	9	-	7	ns
t _{OEL}	20	-	20	-	20	-	20	-	ns		•			•		•	•
t _{WZ}	-	10	-	10	-	10	-	10	ns								


NOTE:

¹⁾ A refresh opportunity must be provided every t_{CSM} . A refresh opportunity is satisfied by the condition : \overline{CS} high for longer than 15ns (t_{CSHP} > 15ns). \overline{CS} Low time must not exceed t_{CSM} (1.7us).

14.1.2. Burst READ - Variable Latency

(WE=VIH, Latency=3, Burst Length=4, WP=Low Enable, WC=one clock prior to the data)

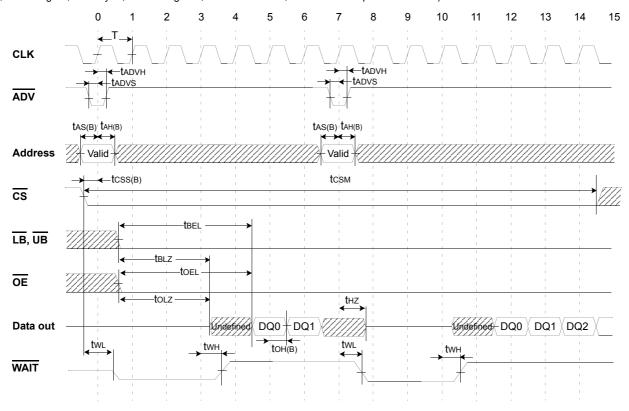
NOTE:

- 1) Delayed Latency should be taken increased when refresh is required. Refer to Latency Table.
- 2) /WAIT Low(tWL) : Data not available(driven by $\overline{\text{CS}}$ low going edge or $\overline{\text{ADV}}$ low going edge) /WAIT High(tWH): Data available(driven by Latency-1 clock)
 /WAIT High-Z(tWZ): Data don't care(driven by CS high going edge)
- 3) Multiple clock risings are not allowed during low ADV period.

 4) Burst operation should not be longer than (t_{CSM}) 1.7us and CS must remain High longer than 15ns to avoid refresh fail.

ITable 81 AC CHARACTERISTICS

Table of AC	CHARA	CIERIS	1103														
Symbol	661	ИНz	801	ИHz	104	MHz	108	MHz	Units	Symbol	661	ИНz	801	ИHz	108	MHz	Units
Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Office	Symbol	Min	Max	Min	Max	Min	Max	Units
Т	15	200	12.5	200	9.6	200	9.26	200	ns	t _{BLZ}	5	-	5	-	5	-	ns
t _{CSM} 1)	-	1700	-	1700	-	1700	-	1700	ns	t _{OLZ}	5	-	5	-	5	-	ns
t _{ADVS}	3	-	3	-	3	-	3	-	ns	t _{CHZ}	-	10	-	10	-	10	ns
t _{ADVH}	2	-	2	-	2	-	2	-	ns	t _{OHZ}	-	10	-	10	-	10	ns
t _{AS(B)}	3	-	3	-	3	-	3	-	ns	t _{BHZ}	-	10	-	10	-	10	ns
t _{AH(B)}	2	-	2	-	2	-	2	-	ns	t _{CD}	-	11	-	9	-	7	ns
t _{CSS(B)}	3	-	3	-	3	-	3	-	ns	t _{OH(B)}	2	-	2	-	2	-	ns
t _{CSHP} 1)	5	-	5	-	5	-	5	-	ns	t _{WL}	-	12	-	12	-	12	ns
t _{BEL}	20	-	20	-	20	-	20	-	ns	t _{WH}	-	11	-	9	-	7	ns
t _{OEL}	20	-	20	-	20	-	20	-	ns		•	•	•	•	•	•	•
t		10		10		10		10	nc								


NOTE:

1) A refresh opportunity must be provided every $\underline{t_{CSM}}$. A refresh opportunity is satisfied by the condition : \overline{CS} high for longer than 15ns ($\underline{t_{CSHP}} > 15$ ns). \overline{CS} Low time must not exceed $\underline{t_{CSM}}$ (1.7us).

14.1.3. Burst READ (ADV Interrupt) - Fixed Latency

(WE=VIH, WAIT=High-Z, Latency=4, Burst Length=4, WP=Low enable, WC=one clock prior to the data)

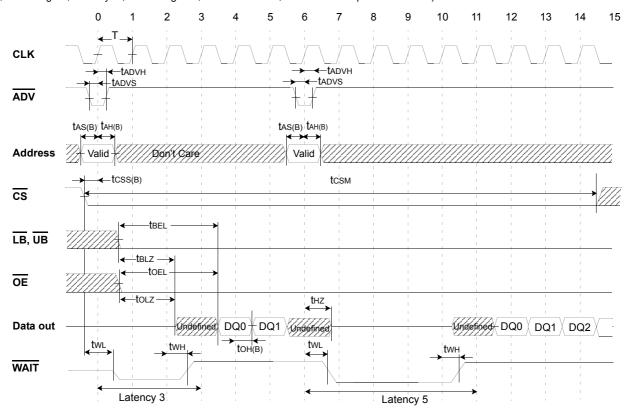
NOTE

- 1) Refresh is blocked during ADV Interrupt Read and continuous Burst Read by ADV interrupt should not be longer than t_{CSM} (1.7us)
- 2) /WAIT Low(tWL) : Data not available(driven by $\overline{\text{CS}}$ low going edge or $\overline{\text{ADV}}$ low going edge) /WAIT High(tWH) : Data available(driven by Latency-1 clock)
- /WAIT High-Z(tWZ): Data don't care(driven by $\overline{\text{CS}}$ high going edge) 3) Multiple clock risings are not allowed during low $\overline{\text{ADV}}$ period.
- 4) Burst interrupt is allowable after the first data received by controller.

ITable 91 AC CHARACTERISTICS

Table al AC	CHARA	CIENIS	1103														
Symbol	661	ИНz	801	/lHz	104	MHz	108	MHz	Units	Symbol	661	ИНz	801	ИHz	108	MHz	Units
Зуппон	Min	Max	Min	Max	Min	Max	Min	Max	Units	Зушьог	Min	Max	Min	Max	Min	Max	Ullits
T	15	200	12.5	200	9.6	200	9.26	200	ns	t _{BLZ}	5	-	5	-	5	-	ns
t _{CSM} 1)	-	1700	-	1700	-	1700	-	1700	ns	t _{OLZ}	5	-	5	-	5	-	ns
t _{ADVS}	3	-	3	-	3	-	3	-	ns	t _{HZ}	-	10	-	10	-	10	ns
t _{ADVH}	2	-	2	-	2	-	2	-	ns	t _{CHZ}	-	10	-	10	-	10	ns
t _{AS(B)}	3	-	3	-	3	-	3	-	ns	t _{OHZ}	-	10	-	10	-	10	ns
t _{AH(B)}	2	-	2	-	2	-	2	-	ns	t _{BHZ}	-	10	-	10	-	10	ns
t _{CSS(B)}	3	-	3	-	3	-	3	-	ns	t _{CD}	-	11	-	9	-	7	ns
t _{CSHP} 1)	5	-	5	-	5	-	5	-	ns	t _{OH(B)}	2	-	2	-	2	-	ns
t _{BEL}	20	-	20	-	20	-	20	-	ns	t _{WL}	-	12	-	12	-	12	ns
t _{OEL}	20	-	20	-	20	-	20	-	ns	t _{WH}	-	11	-	9	-	7	ns
t _{WZ}	-	10	-	10	-	10	-	10	ns			•	•	•	5		

NOTE:


 $\overline{\text{CS}}$ high for longer than 15ns (t_{CSHP} > 15ns). $\overline{\text{CS}}$ Low time must not exceed t_{CSM} (1.7us).

¹⁾ A refresh opportunity must be provided every to A refresh opportunity is satisfied by the condition :

14.1.4. Burst READ (ADV Interrupt) - Variable Latency

(WE=VIH, WAIT=High-Z, Latency=3,Burst Length=4,WP=Low enable, WC=one clock prior to the data)

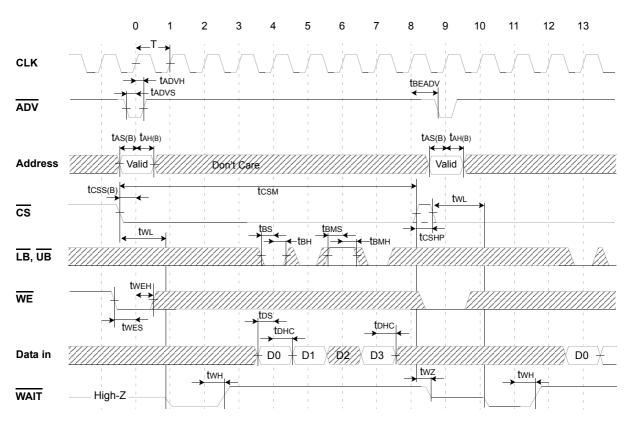
NOTE:

- 1) Delayed latency is taken for Burst READ by ADV interrupt. Refer to Latency Table.
- 2) Refresh is blocked during ADV Interrupt Read and continuous Burst Read by ADV interrupt should not be longer than t_{CSM} (1.7us)
- 3) /WAIT Low(tWL) : Data not available(driven by $\overline{\text{CS}}$ low going edge or $\overline{\text{ADV}}$ low going edge) /WAIT High(tWH) : Data available(driven by Latency-1 clock)
 - /WAIT High-Z(tWZ) : Data don't care(driven by $\overline{\text{CS}}$ high going edge)
- 4) Multiple clock risings are not allowed during low ADV period.
 5) Burst interrupt is allowable after the first data received by controller.

[Table 10] AC CHARACTERISTICS

Symbol	661	ЛНz	801	ЛНz	104	MHz	108	MHz	Units	Symbol	661	ИHz	801	ИHz	108	MHz	Units
Syllibol	Min	Max	Min	Max	Min	Max	Min	Max	Ullits	Symbol	Min	Max	Min	Max	Min	Max	Ullits
Т	15	200	12.5	200	9.6	200	9.26	200	ns	t _{BLZ}	5	-	5	-	5	-	ns
t _{CSM} 1)	-	1700	-	1700	-	1700	-	1700	ns	t _{OLZ}	5	-	5	-	5	-	ns
t _{ADVS}	3	-	3	-	3	-	3	-	ns	t _{HZ}	-	10	-	10	-	10	ns
t _{ADVH}	2	-	2	-	2	-	2	-	ns	t _{CHZ}	-	10	-	10	-	10	ns
t _{AS(B)}	3	-	3	-	3	-	3	-	ns	t _{OHZ}	-	10	-	10	-	10	ns
t _{AH(B)}	2	-	2	-	2	-	2	-	ns	t _{BHZ}	-	10	-	10	-	10	ns
t _{CSS(B)}	3	-	3	-	3	-	3	-	ns	t _{CD}	-	11	-	9	-	7	ns
t _{CSHP} 1)	5	-	5	-	5	-	5	-	ns	t _{OH(B)}	2	-	2	-	2	-	ns
t _{BEL}	20	-	20	-	20	-	20	-	ns	t _{WL}	-	12	-	12	-	12	ns
t _{OEL}	20	-	20	-	20	-	20	-	ns	t _{WH}	-	11	-	9	-	7	ns
t _{WZ}	-	10	-	10	-	10	-	10	ns								

NOTE


1) A refresh opportunity must be provided every t_{CSM} . A refresh opportunity is satisfied by the condition : \overline{CS} high for longer than 15ns (t_{CSHP} > 15ns). \overline{CS} Low time must not exceed t_{CSM} (1.7us).

14.1.5. Burst WRITE

(OE=VIH, Variable Latency=3, Burst Length=4, WP=Low Enable, WC=one clock prior to the data)

Burst WRITE

1) Refresh can not be implemented when tBEADV is in the range of 0ns ~ 13ns. It may cause Refresh fail to use the device under that condition over 1.7us without CS toggling. To avoid Refresh fail, 13ns for all frequency is needed for tBEADV and CS must remain High longer than 15ns(tCSHP > 15ns) 2) /WAIT Low(tWL): Data not available(driven by CS low going edge or ADV low going edge)

/WAIT High(tWH): Data available(driven by Latency-1 clock)

/WAIT High-Z(tWZ): Data don't care(driven by CS high going edge)

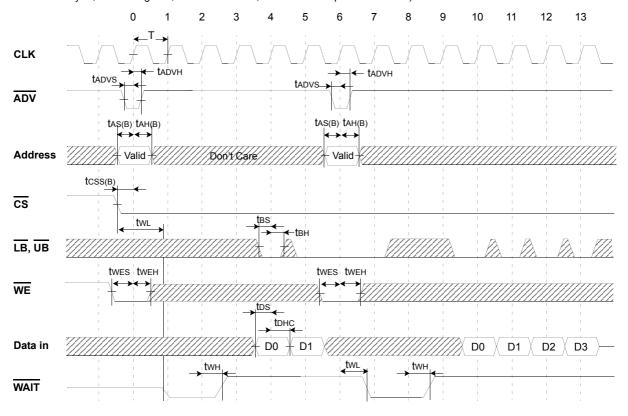
3) Multiple clock risings are not allowed during low ADV period.

4) Burst operation should not be longer than t_{CSM} (1.7μs) and CS must remain High longer than 15ns to avoid refresh fail.

[Table 11] AC CHARACTERISTICS

Symbol	66MHz		80MHz		108MHz		Units	Symbol	66MHz		80MHz		108MHz		Units
	Min	Max	Min	Max	Min	Max	Cilits	Cymbol	Min	Max	Min	Max	Min	Max	Office
t _{CSHP} 1)	5	-	5	-	5	-	ns	t _{DS}	3	-	3	-	3	-	ns
t _{BS}	3	-	3	-	3	-	ns	t _{DHC}	2	-	2	-	2	-	ns
t _{BH}	2	-	2	-	2	-	ns	t _{WL}	-	12	-	12	-	12	ns
t _{BMS}	3	-	3	-	3	-	ns	t _{WH}	-	11	-	9	-	7	ns
t _{BMH}	2	-	2	-	2	-	ns	t _{WZ}	-	10	-	10	-	10	ns
t _{WES}	3	-	3	-	3	-	ns								
t _{WEH}	2	-	2	-	2	-	ns								

NOTE


1) A refresh opportunity must be provided every $t_{\mbox{\scriptsize CSM}}$. A refresh opportunity is satisfied by the condition :

 $\overline{\text{CS}}$ high for longer than 15ns (t_{CSHP} > 15ns). $\overline{\text{CS}}$ Low time must not exceed t_{CSM} (1.7us).

14.1.6. Burst WRITE (ADV PULSE Interrupt)

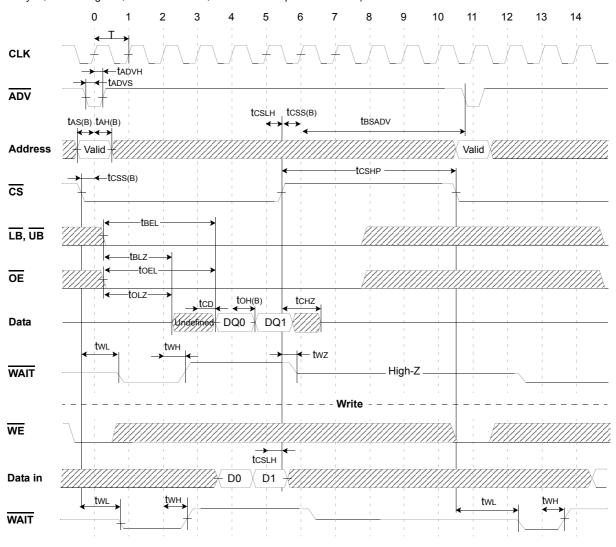
(OE=VIH, Variable Latency=3, Burst Length=4, WP=Low Enable, WC=one clock prior to the data)

NOTE:

- 1) Multiple clock risings are not allowed during low $\overline{\text{ADV}}$ period.
- 2) /WAIT Low(tWL) : Data not available(driven by $\overline{\text{CS}}$ low going edge or $\overline{\text{ADV}}$ low going edge) /WAIT High(tWH) : Data available(driven by Latency-1 clock)
- /WAIT High-Z(tWZ) : Data don't care(driven by CS high going edge)
- 3) Burst interrupt is allowable after the first data word written.

[Table 12] AC CHARACTERISTICS

Symbol	66MHz		80MHz		108MHz		Units	Symbol	66MHz		80MHz		108MHz		Units
	Min	Max	Min	Max	Min	Max	Units	Symbol	Min	Max	Min	Max	Min	Max	Uillis
t _{CSHP} 1)	5	-	5	-	5	-	ns	t _{DS}	3	-	3	-	3	-	ns
t _{BS}	3	-	3	-	3	-	ns	t _{DHC}	2	-	2	-	2	-	ns
t _{BH}	2	-	2	-	2	-	ns	t _{WL}	-	12	-	12	-	12	ns
t _{BMS}	3	-	3	-	3	-	ns	t _{WH}	-	11	-	9	-	7	ns
t _{BMH}	2	-	2	-	2	-	ns	t _{WZ}	-	10	-	10	-	10	ns
t _{WES}	3	-	3	-	3	-	ns		•						
t _{WEH}	2	-	2	-	2	-	ns								


NOTE:

1) A refresh opportunity must be provided every $\underline{t_{CSM}}$. A refresh opportunity is satisfied by the condition : \overline{CS} high for longer than 15ns ($\underline{t_{CSHP}} > 15$ ns). \overline{CS} Low time must not exceed $\underline{t_{CSM}}$ (1.7us).

14.1.7. Burst READ STOP & Burst WRITE STOP

(Variable Latency=3, Burst Length=4, WP=Low Enable, WC=one clock prior to the data)

NOTE

- 1) Refresh can not be implemented when tBEADV is in the range of 0ns ~ 13ns. It may cause Refresh fail to use the device under that condition over 1.7us without CS toggling. To avoid Refresh fail, 13ns for all frequency is needed for tBEADV and CS must remain High longer than 15ns (t_{CSHP} > 15ns)
- 2) Multiple clock risings are not allowed during low ADV period.

3) /WAIT Low(tWL) : Data not available(driven by CS low going edge or ADV low going edge)

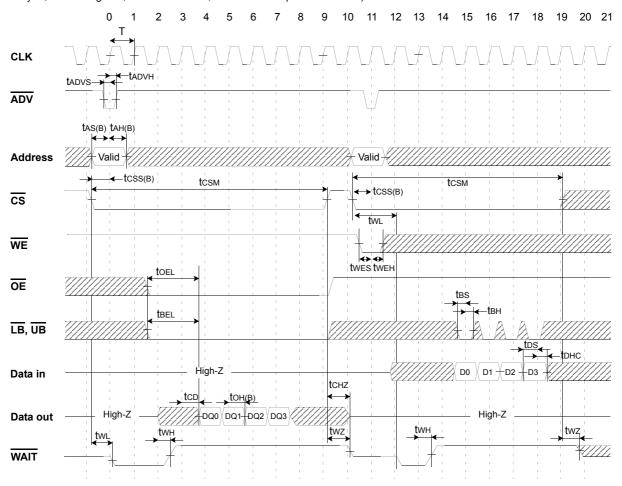
/WAIT High(tWH) : Data available(driven by Latency-1 clock)

/WAIT High-Z(tWZ): Data don't care(driven by CS high going edge)

[Table 13] AC CHARACTERISTICS

Symbol	66MHz		80MHz		108MHz		Units	Symbol	66MHz		80MHz		108MHz		Units
	Min	Max	Min	Max	Min	Max	Onits	Cymbol	Min	Max	Min	Max	Min	Max	Cilita
t _{CSHP} 1)	5	-	5	-	5	-	ns	t _{DS}	3	-	3	-	3	-	ns
t _{BS}	3	-	3	-	3	-	ns	t _{DHC}	2	-	2	-	2	-	ns
t _{BH}	2	-	2	-	2	-	ns	t _{WL}	-	12	-	12	-	12	ns
t _{BMS}	3	-	3	-	3	-	ns	t_{WH}	-	11	-	9	-	7	ns
t _{BMH}	2	-	2	-	2	-	ns	t _{WZ}	-	10	-	10	-	10	ns
t _{WES}	3	-	3	-	3	-	ns	t _{BSADV}	-	0	-	0	-	0	ns
t _{WEH}	2	-	2	-	2	-	ns	t _{OH(B)}	2	-	2	-	2	-	ns

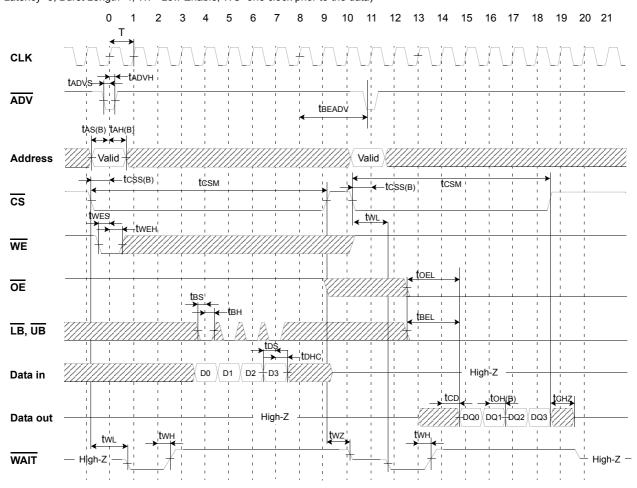
NOTE:


1) $\underline{\text{To}}$ avoid refresh fail, t_{CSHP} > 15ns :

 $\overline{\text{CS}}$ must remain High longer than 15ns for refresh, the $\overline{\text{CS}}$ LOW time must not exceed t_{CSM} 1.7us.

14.1.8. Burst READ followed by Burst WRITE

(Variable Latency=3, Burst Length=4, WP=Low Enable, WC=one clock prior to the data)


NOTE:

- //WAIT Low(tWL): Data not available(driven by CS low going edge or ADV low going edge)
 //WAIT High(tWH): Data available(driven by Latency-1 clock)
 //WAIT High-Z(tWZ): Data don't care(driven by CS high going edge)
 2) Multiple clock risings are not allowed during low ADV period.
- 3) Burst operation should not be longer than t_{CSM} (1.7 μ s) and \overline{CS} must remain High longer than 15ns to avoid refresh fail.

14.1.9. Burst WRITE followed by Burst READ

(Variable Latency=3, Burst Length=4, WP=Low Enable, WC=one clock prior to the data)

NOTE:

1) Refresh can not be implemented when tBEADV is in the range of 0ns ~ 13ns. It may cause Refresh fail to use the device under that condition over 1.7us without CS toggling. To avoid Refresh fail, 13ns for all frequency is needed for tBEADV and CS must remain High longer than 15ns (t_{CSHP} > 15ns)

2) /WAIT Low(tWL): Data not available(driven by $\overline{\text{CS}}$ low going edge or $\overline{\text{ADV}}$ low going edge)

/WAIT High(tWH): Data available(driven by Latency-1 clock)

/WAIT High-Z(tWZ) : Data don't care(driven by CS high going edge)

3) Multiple clock risings are not allowed during low ADV period.
 4) Burst operation should not be longer than t_{CSM} (1.7μs) and CS must remain High longer than 15ns to avoid refresh fail.

