**CMOS SDRAM** 

# 16Mb H-die SDRAM Specification

# 50 TSOP-II with Pb-Free (RoHS compliant)

# Revision 1.4 August 2004

Samsung Electronics reserves the right to change products or specification without notice.



#### **Revision History**

#### Revision 0.0 (October, 2003)

Target spec release

#### Revision 1.0 (November, 2003)

Revision 1.0 spec release

#### Revision 1.1 (December, 2003)

• Corrected PKG dimension.

#### Revision 1.2 (January, 2004)

- Deleted -10(10ns) speed
  Modified load cap 50pF -> 30pF
  Modified DC current.
- Modified DC current.

#### Revision 1.3 (May, 2004)

Added Note 8. sentense of tRDL parameter.

#### Revision 1.4 (August, 2004)

Corrected typo.



## **CMOS SDRAM**

## **CMOS SDRAM**

## 512K x 16Bit x 2 Banks Synchronous DRAM

#### FEATURES

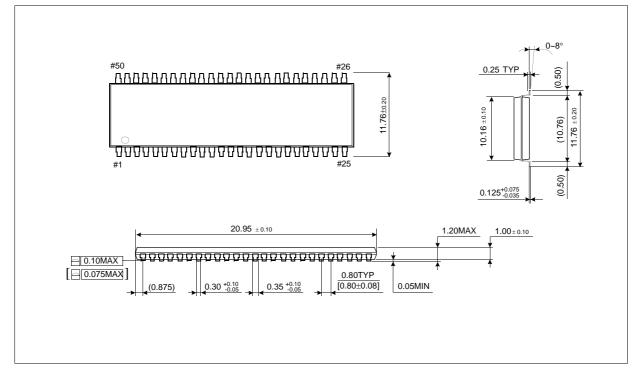
- 3.3V power supply
- LVTTL compatible with multiplexed address
- Dual banks operation
- MRS cycle with address key programs
  - -. CAS Latency (2 & 3)
  - -. Burst Length (1, 2, 4, 8 & full page)
  - -. Burst Type (Sequential & Interleave)
- All inputs are sampled at the positive going edge of the system
- clockBurst Read Single-bit Write operation
- DQM for masking
- Auto & self refresh
- 15.6us refresh duty cycle (2K/32ms)
- Pb-free Package
- RoHS compliant

#### **GENERAL DESCRIPTION**

The K4S161622H is 16,777,216 bits synchronous high data rate Dynamic RAM organized as 2 x 524,288 words by 16 bits, fabricated with SAMSUNG's high performance CMOS technology. Synchronous design allows precise cycle control with the use of system clock I/O transactions are possible on every clock cycle. Range of operating frequencies, programmable burst length and programmable latencies allow the same device to be useful for a variety of high bandwidth, high performance memory system applications.

#### **ORDERING INFORMATION**

| Part NO.        | MAX Freq. | Interface | Package  |
|-----------------|-----------|-----------|----------|
| K4S161622H-UC55 | 183MHz    |           |          |
| K4S161622H-UC60 | 166MHz    | LVTTL     | 50       |
| K4S161622H-UC70 | 143MHz    |           | TSOP(II) |
| K4S161622H-UC80 | 125MHz    |           |          |


| Organization | Row Address | Column Address |
|--------------|-------------|----------------|
| 1Mx16        | A0~A10      | A0-A7          |

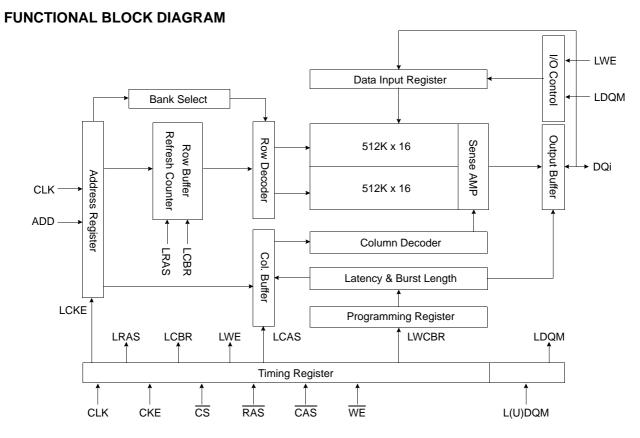
Row & Column address configuration



## **CMOS SDRAM**

#### **Package Physical Dimension**




50Pin TSOP(II) Package Dimension



## http://www.BDTIC.com/SAMSUNG

## K4S161622H

## **CMOS SDRAM**



\* Samsung Electronics reserves the right to change products or specification without notice.



## http://www.BDTIC.com/SAMSUNG

### K4S161622H

## **CMOS SDRAM**

| PIN CONFIGURATION | (TOP VIEV    | V)         |            |   |         |                    |
|-------------------|--------------|------------|------------|---|---------|--------------------|
|                   | Vdd          |            | <b>5</b> 0 | ļ | Vss     |                    |
|                   | DQ0          | 2          | 49         | þ | DQ15    |                    |
|                   | DQ1          | <b>G</b> 3 | 48         | b | DQ14    |                    |
|                   |              | 4          | 47         | þ | Vssq    |                    |
|                   | DQ2          |            |            |   | DQ13    |                    |
|                   |              | 6          | 45         | þ | DQ12    |                    |
|                   | Vddq         | 7          | 44         | þ | Vddq    |                    |
|                   | DQ4          | 8 🗆        | 43         | þ | DQ11    |                    |
|                   | DQ5          | 9          | 42         | þ | DQ10    |                    |
|                   | Vssq         | <b>1</b> 0 | 41         | þ | Vssq    |                    |
|                   | DQ6          | <b>1</b> 1 | 40         | þ | DQ9     |                    |
|                   | DQ7          | <b>1</b> 2 | 39         | þ | DQ8     |                    |
|                   | Vddq         |            | 38         | þ | Vddq    |                    |
|                   | LD <u>QM</u> | <b>1</b> 4 | 37         | þ | N.C/RFU |                    |
|                   | WE           | <b>1</b> 5 | 36         | μ | UDQM    |                    |
|                   | CAS          | <b>1</b> 6 |            |   | CLK     |                    |
|                   |              | <b>1</b> 7 |            |   | CKE     |                    |
|                   | CS           | <b>1</b> 8 | 33         | μ | N.C     |                    |
|                   |              | <b>1</b> 9 | 32         | μ | A9      |                    |
|                   | A10/AP       | <b>2</b> 0 | 31         | þ | A8      |                    |
|                   | A0           | 21         | 30         | Þ | A7      |                    |
|                   | A1           | 22         | 29         | Þ | A6      |                    |
|                   |              | <b>2</b> 3 |            |   | A5      | 50PIN TSOP (II)    |
|                   | A3           | 24         |            |   | A4      | (400mil x 825mil)  |
|                   | Vdd          | 25         | 26         | þ | Vss     | (0.8 mm PIN PITCH) |
|                   |              |            |            |   |         |                    |

#### PIN FUNCTION DESCRIPTION

| Pin         | Name                                      | Input Function                                                                                                                                                                          |
|-------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CLK         | System Clock                              | Active on the positive going edge to sample all inputs.                                                                                                                                 |
| CS          | Chip Select                               | Disables or enables device operation by masking or enabling all inputs except CLK, CKE and L(U)DQM                                                                                      |
| CKE         | Clock Enable                              | Masks system clock to freeze operation from the next clock cycle.<br>CKE should be enabled at least one cycle prior to new command.<br>Disable input buffers for power down in standby. |
| A0 ~ A10/AP | Address                                   | Row / column addresses are multiplexed on the same pins.<br>Row address : RA0 ~ RA10, column address : CA0 ~ CA7                                                                        |
| BA          | Bank Select Address                       | Selects bank to be activated during row address latch time.<br>Selects bank for read/write during column address latch time.                                                            |
| RAS         | Row Address Strobe                        | Latches row addresses on the positive going edge of the CLK with $\overline{\text{RAS}}$ low.<br>Enables row access & precharge.                                                        |
| CAS         | Column Address Strobe                     | Latches column addresses on the positive going edge of the CLK with CAS low.<br>Enables column access.                                                                                  |
| WE          | Write Enable                              | Enables write operation and <u>row precharge</u> .<br>Latches data in starting from CAS, WE active.                                                                                     |
| L(U)DQM     | Data Input/Output Mask                    | Makes data output Hi-Z, tsHz after the clock and masks the output.<br>Blocks data input when L(U)DQM active.                                                                            |
| DQ0 ~ 15    | Data Input/Output                         | Data inputs/outputs are multiplexed on the same pins.                                                                                                                                   |
| VDD/VSS     | Power Supply/Ground                       | Power and ground for the input buffers and the core logic.                                                                                                                              |
| VDDQ/VSSQ   | Data Output Power/Ground                  | Isolated power supply and ground for the output buffers to provide improved noise immunity.                                                                                             |
| N.C/RFU     | No Connection/<br>Reserved for Future Use | This pin is recommended to be left No Connection on the device.                                                                                                                         |



## **CMOS SDRAM**

#### **ABSOLUTE MAXIMUM RATINGS**

| Parameter                             | Symbol    | Value      | Unit |
|---------------------------------------|-----------|------------|------|
| Voltage on any pin relative to Vss    | Vin, Vout | -1.0 ~ 4.6 | V    |
| Voltage on VDD supply relative to Vss | Vdd, Vddq | -1.0 ~ 4.6 | V    |
| Storage temperature                   | Тятд      | -55 ~ +150 | °C   |
| Power dissipation                     | PD        | 1          | W    |
| Short circuit current                 | los       | 50         | mA   |

Note : Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded.

Functional operation should be restricted to recommended operating condition.

Exposure to higher than recommended voltage for extended periods of time could affect device reliability.

#### **DC OPERATING CONDITIONS**

Recommended operating conditions (Voltage referenced to Vss = 0V, TA = 0 to 70°C)

| Parameter                 | Symbol    | Min  | Тур | Max      | Unit | Note       |
|---------------------------|-----------|------|-----|----------|------|------------|
| Supply voltage            | Vdd, Vddq | 3.0  | 3.3 | 3.6      | V    |            |
| Input logic high votlage  | Vін       | 2.0  | 3.0 | Vddq+0.3 | V    | 1          |
| Input logic low voltage   | VIL       | -0.3 | 0   | 0.8      | V    | 2          |
| Output logic high voltage | Vон       | 2.4  | -   | -        | V    | Iон = -2mA |
| Output logic low voltage  | Vol       | -    | -   | 0.4      | V    | IOL = 2mA  |
| Input leakage current     | L         | -10  | -   | 10       | uA   | 3          |

Note : 1. VIH (max) = 5.6V AC. The overshoot voltage duration is  $\leq$  3ns.

2. VIL (min) = -2.0V AC. The undershoot voltage duration is  $\leq$  3ns.

3. Any input  $0V \le VIN \le VDDQ$ .

Input leakage currents include HI-Z output leakage for all bi-directional buffers with Tri-State outputs.

#### $\label{eq:capacity} \textbf{CAPACITANCE} \quad (VDD = 3.3V, \ TA = 23^{\circ}C, \ f = 1 \\ \text{MHz}, \ VREF = 1.4V \pm 200 \ \text{mV})$

| Pin                            | Symbol | Min | Max | Unit |
|--------------------------------|--------|-----|-----|------|
| Clock                          | CCLK   | 2   | 4   | pF   |
| RAS, CAS, WE, CS, CKE, L(U)DQM | CIN    | 2   | 4   | pF   |
| Address                        | Cadd   | 2   | 4   | pF   |
| DQ0 ~ DQ15                     | Соит   | 3   | 5   | pF   |

#### **DECOUPLING CAPACITANCE GUIDE LINE**

Recommended decoupling capacitance added to power line at board.

| Parameter                                    | Symbol | Value      | Unit |
|----------------------------------------------|--------|------------|------|
| Decoupling Capacitance between VDD and Vss   | CDC1   | 0.1 + 0.01 | uF   |
| Decoupling Capacitance between VDDQ and VSSQ | CDC2   | 0.1 + 0.01 | uF   |

Note: 1. VDD and VDDQ pins are separated each other.

All VDD pins are connected in chip. All VDDQ pins are connected in chip.

2. Vss and Vssq pins are separated each other

All Vss pins are connected in chip. All Vssq pins are connected in chip.



## **CMOS SDRAM**

#### **DC CHARACTERISTICS**

(Recommended operating condition unless otherwise noted, TA = 0 to 70°C )

| Devenueter                                       | Cumhal | Test Condition                                                                                                      |     | Vers | sion |     | 11   | Nata |
|--------------------------------------------------|--------|---------------------------------------------------------------------------------------------------------------------|-----|------|------|-----|------|------|
| Parameter                                        | Symbol | Test Condition                                                                                                      | -55 | -60  | -70  | -80 | Unit | Note |
| Operating Current<br>(One Bank Active)           | ICC1   | Burst Length =1<br>trc≥trc(min)<br>I₀ = 0 mA                                                                        | mA  | 2    |      |     |      |      |
| Precharge Standby Current in                     | ICC2P  | CKE≤VIL(max), tcc = 10ns                                                                                            |     | 2    | 2    |     | mA   |      |
| power-down mode                                  | ICC2PS | CKE & CLK≤VIL(max), tCC = ∞                                                                                         |     | 2    | 2    |     | ma   |      |
| Precharge Standby Current                        | ICC2N  | CKE $\geq$ VIH(min), $\overline{CS} \geq$ VIH(min), tcc = 10ns<br>Input signals are changed one time during<br>30ns |     | 1    | 5    |     | mA   |      |
| in non power-down mode                           | ICC2NS | CKE≥VIн(min), CLK≤VIL(max), tcc = ∞<br>Input signals are stable                                                     | 5   |      |      |     |      |      |
| Active Standby Current                           | ІссзР  | CKE≤VIL(max), tcc = 10ns                                                                                            |     | 3    | mA   |     |      |      |
| in power-down mode                               | ICC3PS | CKE & CLK≤VIL(max), tCC = ∞                                                                                         |     | 3    | ma   |     |      |      |
| Active Standby Current<br>in non power-down mode | ICC3N  | $CKE \ge VIH(min), \overline{CS} \ge VIH(min), tCC = 10ns$<br>Input signals are changed one time during 30ns        |     | 2    | 5    |     | mA   |      |
| (One Bank Active)                                | ICC3NS | CKE≥VIH(min), CLK≤VIL(max), tcc = ∞<br>Input signals are stable                                                     |     | 1    | 5    |     | mA   |      |
| Operating Current<br>(Burst Mode)                | ICC4   | lo = 0 mA<br>Page Burst 2Banks Activated<br>tccD = 2CLKs                                                            | 155 | 150  | 140  | 130 | mA   | 2    |
| Refresh Current                                  | ICC5   | tRC≥tRC(min)                                                                                                        | 105 | 100  | 90   | 90  | mA   | 3    |
| Self Refresh Current                             | ICC6   | CKE≤0.2V                                                                                                            |     | 1    | 1    |     | mA   |      |

Note : 1. Unless otherwise notes, Input level is CMOS(VIH/VIL=VDDQ/VSSQ) in LVTTL.

2. Measured with outputs open. Addresses are changed only one time during tcc(min).

3. Refresh period is 32ms. Addresses are changed only one time during tcc(min).

4. K4S161622H-UC\*\*

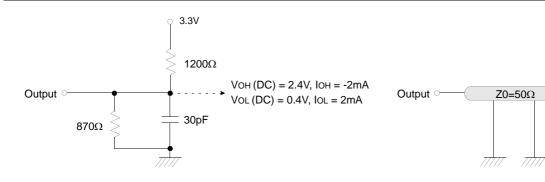


## http://www.BDTIC.com/SAMSUNG

## K4S161622H

## **CMOS SDRAM**

Vtt=1.4V


50Ω

30pF

/////

#### AC OPERATING TEST CONDITIONS (VDD = $3.3V\pm0.3V$ , TA = 0 to 70°C)

| Parameter                                 | Value           | Unit |
|-------------------------------------------|-----------------|------|
| Input levels (Vih/Vil)                    | 2.4 / 0.4       | V    |
| Input timing measurement reference level  | 1.4             | V    |
| Input rise and fall time                  | tr / tf = 1 / 1 | ns   |
| Output timing measurement reference level | 1.4             | V    |
| Output load condition                     | See Fig. 2      |      |



(Fig. 1) DC Output Load Circuit

(Fig. 2) AC Output Load Circuit

#### AC CHARACTERISTICS

(AC operating conditions unless otherwise noted)

| Parar                           | notor                    | Symbol    | -5            | 55   | -6  | 60   | -7  | 70   | -8  | 30   | Unit | Note |
|---------------------------------|--------------------------|-----------|---------------|------|-----|------|-----|------|-----|------|------|------|
| Fala                            | neter                    | Symbol    | Min           | Max  | Min | Max  | Min | Max  | Min | Max  | Unit | Note |
| CLK cycle time                  | CAS Latency=3            | tcc       | 5.5           | 1000 | 6   | 1000 | 7   | 1000 | 8   | 1000 | ns   | 1    |
| CER Cycle unie                  | CAS Latency=2            | ice       | -             | 1000 | -   | 1000 | 10  | 1000 | 10  | 1000 | 115  | I    |
| Row active to row ac            | tive delay               | tRRD(min) | 11            | -    | 12  | -    | 14  | -    | 16  | -    | ns   |      |
| RAS to CAS delay                |                          | tRCD(min) | 16.5          | -    | 18  | -    | 20  | -    | 20  | -    | ns   |      |
| Row precharge time              |                          | tRP(min)  | in) 16.5 - 18 |      | -   | 20   | -   | 20   | -   | ns   |      |      |
| Row active time                 | ow active time tRAS(min) |           | 38.5          | 100  | 42  | 100  | 49  | 100  | 48  | 100  | ns   |      |
| Row cycle time                  |                          | tRC(min)  | 55            | -    | 60  | -    | 69  | -    | 70  | -    | ns   |      |
| Last data in to row pr          | echarge                  | tRDL(min) | 2             | 2 1  |     |      |     |      |     |      | CLK  | 2,8  |
| Last data in to new co          | ol.address delay         | tCDL(min) | 1             |      |     |      |     |      |     | CLK  | 2    |      |
| Last data in to burst s         | stop                     | tBDL(min) | 1             |      |     |      |     |      |     | CLK  | 2    |      |
| Col. address to col. a          | ddress delay             | tCCD(min) | 1             |      |     |      |     |      |     |      | CLK  |      |
| Mode Register Set cycle time tM |                          | tMRS(min) |               |      |     |      | 2   |      |     |      | CLK  |      |
| Number of valid out-            | CAS Latence              | cy=3      |               |      |     | 2    | 2   |      |     |      |      |      |
| put data                        | CAS Latence              | cy=2      |               |      |     |      | 1   |      |     |      | ea   | 4    |



## **CMOS SDRAM**

(AC operating conditions unless otherwise noted)

| Bara                   | ameter        | Symbol | -{  | 55   | -6  | 50   | -7   | 70   | -8  | 30   | Unit | Note |
|------------------------|---------------|--------|-----|------|-----|------|------|------|-----|------|------|------|
| Faia                   | lineter       | Symbol | Min | Max  | Min | Max  | Min  | Max  | Min | Max  | Unit | NOLE |
| CLK cycle time         | CAS Latency=3 | tcc    | 5.5 | 1000 | 6   | 1000 | 7    | 1000 | 8   | 1000 | ns   | 5    |
|                        | CAS Latency=2 | 100    | -   | 1000 | -   | 1000 | 10   | 1000 | 10  | 1000 | 115  | 5    |
| CLK to valid           | CAS Latency=3 | tSAC   | -   | 5    | -   | 5.5  | -    | 5.5  | -   | 6    | ns   | 5, 6 |
| output delay           | CAS Latency=2 | ISAC   | -   | 6    | -   | 6    | -    | 6    | -   | 6    | 115  | 5, 0 |
| Output data            |               | tон    | 2   | -    | 2.5 | -    | 2.5  | -    | 2.5 | -    | ns   | 6    |
| CLK high pulse         | CAS Latency=3 | tCH -  | 2   |      | 2.5 | _    | 3 -  |      | 3   | -    | ns   | 7    |
| width                  | CAS Latency=2 |        | 3   | -    | 3   | -    | 5    | -    | 5   |      |      | 1    |
| CLK low pulse          | CAS Latency=3 | tCL    | 2   |      | 2.5 | _    | 3    | -    | 3   |      | ns   | 7    |
| width                  | CAS Latency=2 | ICL    | 3   | -    | 3   | -    | 5    | -    | 3   | -    |      |      |
|                        | CAS Latency=3 | tss    | 1.5 |      | 1.5 |      | 1.75 | _    | 2   | _    |      | 7    |
| Input setup time       | CAS Latency=2 | 155    | 2   | _    | 2   | _    | 2    | -    | 2   | -    | ns   | '    |
| Input hold time        |               | tsн    | 1   | -    | 1   | -    | 1    | -    | 1   | -    | ns   | 7    |
| CLK to output in Low-Z |               | ts∟z   | 1   | -    | 1   | -    | 1    | -    | 1   | -    | ns   | 6    |
| CLK to output          | CAS Latency=3 | tsHz   | -   | 5    | -   | 5.5  | -    | 5.5  | -   | 6    | ns   |      |
| in Hi-Z                | CAS Latency=2 | 1947   | -   | 6    | -   | 6    | -    | 6    | -   | 6    | 115  |      |

Notes : 1. The minimum number of clock cycles is determined by dividing the minimum time required with clock cycle time and then rounding off to the next higher integer. Refer to the following clock unit based AC conversion table

2. Minimum delay is required to complete write.

3. All parts allow every cycle column address change.

4. In case of row precharge interrupt, auto precharge and read burst stop.

5. Parameters depend on programmed CAS latency.6. If clock rising time is longer than 1ns, (tr/2-0.5)ns should be added to the parameter.

7. Assumed input rise and fall time (tr & tf)=1ns.

If tr & tf is longer than 1ns, transient time compensation should be considered,

i.e., [(tr + tf)/2-1]ns should be added to the parameter.

8. In 100MHz and below 100MHz operating conditions, tRDL=1CLK and tDAL=1CLK + 20ns is also supported. SAMSUNG recommends tRDL=2CLK and tDAL=2CLK + tRP.



## **CMOS SDRAM**

#### SIMPLIFIED TRUTH TABLE

| COMMAND                                     |                              |       | CKEn-1 | CKEn | CS | RAS | CAS | WE | DQM | BA            | A10/AP | A9~ A0                       | Note |
|---------------------------------------------|------------------------------|-------|--------|------|----|-----|-----|----|-----|---------------|--------|------------------------------|------|
| Register                                    | Mode Register Set            |       | н      | Х    | L  | L   | L   | L  | Х   | OP CODE       |        | 1, 2                         |      |
| Refresh                                     | Auto Refresh                 |       | н      | Н    | L  | L   | L   | н  | х   | х             |        |                              | 3    |
|                                             | Self<br>Refresh              | Entry |        | L    |    |     | L   |    | ^   | ^             |        |                              | 3    |
|                                             |                              | Exit  | L      | Н    | L  | Н   | Н   | н  | x   |               | x      |                              | 3    |
|                                             |                              |       |        |      | н  | Х   | Х   | Х  |     |               |        |                              | 3    |
| Bank Active & Row Addr.                     |                              |       | Н      | Х    | L  | L   | Н   | н  | Х   | V Row Address |        |                              |      |
| Read &<br>Column Address                    | Auto Precharge Disable       |       | н      | х    | L  | Н   | L   | н  | х   | V             | L      | Column<br>Address<br>(Ao~A7) | 4    |
|                                             | Auto Precharge Enable        |       |        |      |    |     |     |    |     | v             | н      |                              | 4, 5 |
| Write &<br>Column Address                   | Auto Precharge Disable       |       | н      | х    | L  | Н   | L   | L  | х   | v             | L      | Column<br>Address<br>(Ao~A7) | 4    |
|                                             | Auto Precharge Enable        |       |        |      |    |     |     |    |     | v             | Н      |                              | 4, 5 |
| Burst Stop                                  |                              |       | Н      | Х    | L  | Н   | Н   | L  | Х   |               | Х      |                              | 6    |
| Precharge                                   | Bank Selection<br>Both Banks |       | н      | х    | L  | L   | Н   | L  | х   | V             | L X    |                              |      |
| Treenarge                                   |                              |       |        |      |    |     |     |    |     | Х             | н      |                              |      |
| Clock Suspend or Entry<br>Active Power Down |                              | Entry | н      | L    | Н  | Х   | Х   | х  | x   |               |        |                              |      |
|                                             |                              | Lindy |        |      | L  | V   | V   | V  | ~   | Х             |        |                              |      |
|                                             |                              | Exit  | L      | Н    | х  | Х   | Х   | х  | Х   |               |        |                              |      |
| Precharge Power Down Mode                   |                              | Entry | н      | L    | Н  | Х   | Х   | Х  | x   |               |        |                              |      |
|                                             |                              | Lindy |        |      | L  | Н   | Н   | Н  | ~   | Х             |        |                              |      |
|                                             |                              | Exit  | L      | Н    | Н  | Х   | Х   | х  | х   |               |        |                              |      |
|                                             |                              |       |        |      | L  | V   | V   | V  |     |               |        |                              |      |
| DQM                                         |                              |       | Н      |      |    | Х   |     |    | V   |               | 7      |                              |      |
| No Operation Command                        |                              | н     | х      | Н    | Х  | Х   | Х   | х  | х   |               |        |                              |      |
|                                             |                              |       |        | L    | Н  | Н   | Н   | ~  |     |               |        |                              |      |

(V=Valid, X=Don't Care, H=Logic High, L=Logic Low)

#### Note: 1. OP Code : Operand Code

A0 ~ A10/AP, BA : Program keys. (@MRS)

- 2. MRS can be issued only at both banks precharge state.
- A new command can be issued after 2 clock cycle of MRS.
- 3. Auto refresh functions are as same as CBR refresh of DRAM. The automatical precharge without row precharge command is meant by "Auto". Auto/self refresh can be issued only at both banks precharge state.
- 4. BA : Bank select address.
  - If "Low" at read, write, row active and precharge, bank A is selected.
  - If "High" at read, write, row active and precharge, bank B is selected.
  - If A10/AP is "High" at row precharge, BA is ignored and both banks are selected.
- 5. During burst read or write with auto precharge, new read/write command can not be issued. Another bank read/write command can be issued after the end of burst. New row active of the assoiated bank can be issued at tRP after the end of burst.
- 6. Burst stop command is valid at every burst length.
- 7. DQM sampled at positive going edge of a CLK masks the data-in at the very CLK (Write DQM latency is 0), but makes Hi-Z state the data-out of 2 CLK cycles after. (Read DQM latency is 2)

