CMOS SDRAM

Stacked 512Mbit SDRAM

32M x 4bit x 4 Banks Synchronous DRAM LVTTL

Revision 0.0

Apr. 2002

Rev.0.0 Apr. 2002

CMOS SDRAM

Revision History

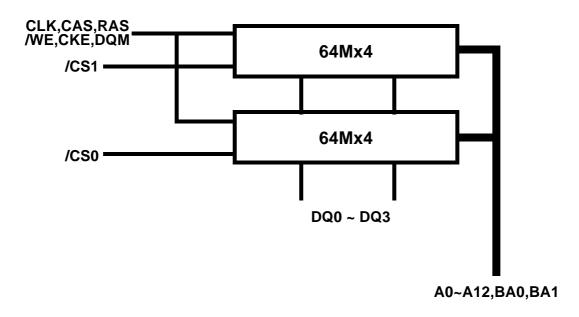
Revision 0.0 (Apr., 2002)

CMOS SDRAM

32M x 4Bit x 4 Banks Synchronous DRAM

FEATURES

- JEDEC standard 3.3V power supply
- LVTTL compatible with multiplexed address
- Four banks operation
- MRS cycle with address key programs
 - -. CAS latency (2 & 3)
 - -. Burst length (1, 2, 4, 8 & Full page)
 - -. Burst type (Sequential & Interleave)
- All inputs are sampled at the positive going edge of the system clock.
- Burst read single-bit write operation
- DQM for masking
- Auto & self refresh
- 64ms refresh period (8K Cycle)


GENERAL DESCRIPTION

The K4S510632D is 536,870,912 bits synchronous high data rate Dynamic RAM organized as 4 x 33,554,432 words by 4 bits, fabricated with SAMSUNG's high performance CMOS technology. Synchronous design allows precise cycle control with the use of system clock I/O transactions are possible on every clock cycle. Range of operating frequencies, programmable burst length and programmable latencies allow the same device to be useful for a variety of high bandwidth, high performance memory system applications.

ORDERING INFORMATION

Part No.	Max Freq.	Interface	Package
K4S510632D-TC/L7C	133MHz(CL=2)		
K4S510632D-TC/L75	133MHz(CL=3)	Ι ΥΤΤΙ	54pin
K4S510632D-TC/L1H	100MHz(CL=2)		TSOP(II)
K4S510632D-TC/L1L	100MHz(CL=3)		

CMOS SDRAM

PIN CONFIGURATION (Top view)

VDD I 54 Vss N.C 2 53 N.C VDDQ 3 52 Vssq N.C 4 51 N.C DQ0 5 50 DQ3 Vssq 6 49 VDDQ N.C 7 48 N.C N.C 8 47 N.C VDDQ 9 46 Vssq N.C 10 45 N.C VDQ 11 44 DQ2 Vssq 12 43 VDDQ N.C 13 42 N.C VDD 14 41 DVssq CS1 15 40 N.C/RFU WE 16 39 DQM CAS 17 38 CLK RAS 18 37 CKE CS0 19 36 A12 BA0 20 35 A11 <td< th=""><th></th><th></th><th></th></td<>			
	VDD 1 N.C 2 VDDQ 3 N.C 4 DQ0 5 VSSQ 6 N.C 7 N.C 7 N.C 10 DQ1 11 VSSQ 12 N.C 13 VDDQ 14 CS1 15 WE 16 CAS 17 RAS 18 CS0 19 BA0 20 BA1 21 A10/AP 22 A0 23 A1 24 A2 25 A3< 26	53 N.C 52 Vssq 51 N.C 50 DQ3 49 VDDQ 48 N.C 47 N.C 46 Vssq 45 N.C 44 DQ2 43 VDDQ 42 N.C 44 DQ2 43 VDDQ 42 N.C 41 Vss 40 N.C/RFU 39 DQM 38 CLK 37 CKE 36 A12 35 A11 34 A9 33 A8 32 A7 31 A6 30 A5 29 A4	(400mil x 875mil)

PIN FUNCTION DESCRIPTION

Pin	Name	Input Function
CLK	System clock	Active on the positive going edge to sample all inputs.
CS0~1	Chip select	Disables or enables device operation by masking or enabling all inputs except CLK, CKE and DQM
CKE	Clock enable	Masks system clock to freeze operation from the next clock cycle. CKE should be enabled at least one cycle prior to new command. Disable input buffers for power down in standby.
A0 ~ A12	Address	Row/column addresses are multiplexed on the same pins. Row address : RA0 ~ RA12, Column address : CA0 ~ CA9, CA11
BA0 ~ BA1	Bank select address	Selects bank to be activated during row address latch time. Selects bank for read/write during column address latch time.
RAS	Row address strobe	Latches row addresses on the positive going edge of the CLK with RAS low. Enables row access & precharge.
CAS	Column address strobe	Latches column addresses on the positive going edge of the CLK with CAS low. Enables column access.
WE	Write enable	Enables write operation and row precharge. Latches data in starting from CAS, WE active.
DQM	Data input/output mask	Makes data output Hi-Z, tsнz after the clock and masks the output. Blocks data input when DQM active.
DQ0 ~3	Data input/output	Data inputs/outputs are multiplexed on the same pins.
VDD/VSS	Power supply/ground	Power and ground for the input buffers and the core logic.
Vddq/Vssq	Data output power/ground	Isolated power supply and ground for the output buffers to provide improved noise immunity.

CMOS SDRAM

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Voltage on any pin relative to Vss	Vin, Vout	-1.0 ~ 4.6	V
Voltage on VDD supply relative to Vss	Vdd, Vddq	-1.0 ~ 4.6	V
Storage temperature	Тѕтс	-55 ~ +150	°C
Power dissipation	PD	2	W
Short circuit current	los	50	mA

Note : Permanent device damage may occur if "ABSOLUTE MAXIMUM RATINGS" are exceeded. Functional operation should be restricted to recommended operating condition.

Exposure to higher than recommended voltage for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS

Recommended operating conditions (Voltage referenced to Vss = 0V, TA = 0 to 70°C)

Parameter	Symbol	Min	Тур	Max	Unit	Note
Supply voltage	Vdd, Vddq	3.0	3.3	3.6	V	
Input logic high voltage	Vін	2.0	3.0	Vdd+0.3	V	1
Input logic low voltage	VIL	-0.3	0	0.8	V	2
Output logic high voltage	Vон	2.4	-	-	V	Іон = -2mA
Output logic low voltage	Vol	-	-	0.4	V	IOL = 2mA
Input leakage current	Iц	-10	-	10	uA	3

Notes : 1. VIH (max) = 5.6V AC. The overshoot voltage duration is \leq 3ns.

2. VIL (min) = -2.0V AC. The undershoot voltage duration is \leq 3ns.

3. Any input $0V \le VIN \le VDDQ$.

Input leakage currents include Hi-Z output leakage for all bi-directional buffers with Tri-State outputs.

CAPACITANCE (VDD = 3.3V, TA = 23°C, f = 1MHz, VREF = 1.4V ± 200 mV)

Pin	Symbol	Min	Max	Unit	Note
Clock	CCLK	5.0	9.0	pF	
RAS, CAS, WE, DQM	CIN	5.0	10.0	pF	
Address,CKE	CADD	5.0	10.0	pF	
CS0~1	Ccs	2.5	6.5	pF	
DQ0 ~ DQ8	Соит	8.0	14.0	pF	

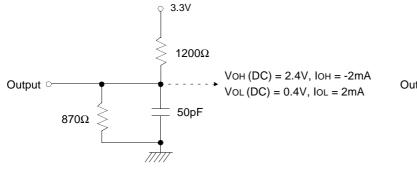
CMOS SDRAM

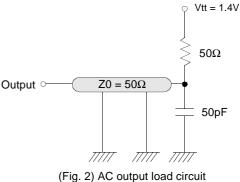
DC CHARACTERISTICS

(Recommended operating condition unless otherwise noted, TA = 0 to $70^{\circ}C$)

Parameter	Symbol	Test Condition			Vers	ion		Unit	Note
i di diffeter	Symbol	Test condition		-7C	-75	-1H	-1L	onne	Note
Operating current (One bank active)	ICC1	Burst length = 1 $tRC \ge tRC(min)$ IO = 0 mA		120	110	110	110	mA	1
Precharge standby current in	Icc2P	CKE ≤ VIL(max), tCC = 10ns			4			mA	
power-down mode	ICC2PS	CKE & CLK \leq VIL(max), tcc = ∞			4				
Precharge standby current in	ICC2N	$CKE \ge VIH(min), \overline{CS} \ge VIH(min), tcc$ Input signals are changed one time			40	D			
non power-down mode	ICC2NS	CKE ≥ VIH(min), CLK ≤ VIL(max), tCl Input signals are stable	$KE \ge VIH(min), CLK \le VIL(max), tcc = \infty$ put signals are stable					mA	
Active Standby current	ІссзР	CKE ≤ VIL(max), tCC = 10ns			8	mA			
in power-down mode	Icc3PS	CKE & CLK \leq VIL(max), tcc = ∞			8	IIIZ			
Active standby current in non power-down mode	ICC3N	$CKE \ge VIH(min), \overline{CS} \ge VIH(min), tcc$ Input signals are changed one time		50				mA	
(One bank active)	ICC3NS	$CKE \ge VIH(min), CLK \le VIL(max), tcd$ Input signals are stable	C = ∞	35				mA	
Operating current (Burst mode)	ICC4	Io = 0 mA Page burst 4banks activated. tccD = 2CLKs	140	140	130	130	mA	1	
Refresh current	ICC5	tRC ≥ tRC(min)	240	220	210	210	mA	2	
Self refresh current	ICC6	CKE ≤ 0.2V	С	6				mA	3
	1000		L		3			mA	4

Notes: 1. Measured with outputs open.


- 2. Refresh period is 64ms.
- 3. K4S510632D-TC**
- 4. K4S510632D-TL**
- 5. Unless otherwise noticed, input swing level is CMOS(VIH/VIL=VDDQ/VSSQ).



CMOS SDRAM

AC OPERATING TEST CONDITIONS (VDD = $3.3V \pm 0.3V$, TA = 0 to 70°C)

Parameter	Value	Unit
AC input levels (Vih/Vil)	2.4/0.4	V
Input timing measurement reference level	1.4	V
Input rise and fall time	tr/tf = 1/1	ns
Output timing measurement reference level	1.4	V
Output load condition	See Fig. 2	

(Fig. 1) DC output load circuit

OPERATING AC PARAMETER

(AC operating conditions unless otherwise noted)

Parameter		Symbol		Ver	sion		Unit	Note
rarameter		Cymbol	-7C	-75	-1H	-1L		Note
Row active to row active dela	y	trrd(min)	15	15	20	20	ns	1
RAS to CAS delay		tRCD(min)	15	20	20	20	ns	1
Row precharge time		tRP(min)	15	20	20	20	ns	1
Row active time		tRAS(min)	45	45	50	50	ns	1
		tRAS(max)		10	us			
Row cycle time		tRC(min)	60	65	70	70	ns	1
Last data in to row precharge		tRDL(min)		:	CLK	2, 5		
Last data in to Active delay		tDAL(min)		2 CLK	+ tRP		-	5
Last data in to new col. addre	ss delay	tCDL(min)			1		CLK	2
Last data in to burst stop		tBDL(min)	1				CLK	2
Col. address to col. address of	ol. address to col. address delay tcccb				CLK	3		
Number of valid output data	CAS latency=3			:	ea	4		
	CAS la	tency=2			1			

Notes: 1. The minimum number of clock cycles is determined by dividing the minimum time required with clock cycle time and then rounding off to the next higher integer.

- 2. Minimum delay is required to complete write.
- 3. All parts allow every cycle column address change.
- 4. In case of row precharge interrupt, auto precharge and read burst stop.
- 5. In 100MHz and below 100MHz operating conditions, tRDL=1CLK and tDAL=1CLK + 20ns is also supported. SAMSUNG recommends tRDL=2CLK and tDAL=2CLK + tRP.

http://www.BDTIC.com/SAMSUNG

K4S510632D

CMOS SDRAM

Para	meter	Symbol	-7	'C	-7	75	-1	Н	-1	-1L		Note
Faia		Symbol	Min	Max	Min	Max	Min	Max	Min	Мах	Unit	Note
CLK cycle time	CAS latency=3	tcc	7.5	1000	7.5	1000	10	1000	10	1000	ns	1
	CAS latency=2	100	7.5	1000	10	1000	10	1000	12	1000	110	
CLK to valid	CAS latency=3	tSAC		5.4		5.4		6		6	ns	1,2
output delay	CAS latency=2			5.4		6		6		7	110	1,2
Output data	CAS latency=3	toн	3		3		3		3		ns 2	2
hold time	CAS latency=2	101	3		3		3		3			2
CLK high pulse v	vidth	tCH	2.5		2.5		3		3		ns	3
CLK low pulse w	idth	tCL	2.5		2.5		3		3		ns	3
Input setup time		tss	1.5		1.5		2		2		ns	3
Input hold time		tsн	0.8		0.8		1		1		ns	3
CLK to output in Low-Z		ts∟z	1		1		1		1		ns	2
CLK to output	CAS latency=3	tsHz		5.4		5.4		6		6	ns	
in Hi-Z	CAS latency=2	1382		5.4		6		6		7	115	

AC CHARACTERISTICS (AC operating conditions unless otherwise noted)

Notes: 1. Parameters depend on programmed CAS latency.

2. If clock rising time is longer than 1ns, (tr/2-0.5)ns should be added to the parameter.

3. Assumed input rise and fall time (tr & tf) = 1ns.

If tr & tf is longer than 1ns, transient time compensation should be considered,

i.e., [(tr + tf)/2-1]ns should be added to the parameter.

CMOS SDRAM

SIMPLIFIED TRUTH TABLE

С	ommand		CKEn-1	CKEn	cs	RAS	CAS	WE	DQM	BA 0,1	A10/AP	A11,A12, A9 ~ A0	Note
Register	Mode regist	ter set	н	Х	L	L	L	L	Х		OP code		
	Auto refres	h	н	Н	L	L	L	н	х	x			3
Refresh	0.11	Entry		L	_	-	-		~		~		3
Rencon	Self refresh	Exit	L	н	L	Н	Н	Н	х		Х		3
		EXI	E		Н	Х	Х	Х	~		~		3
Bank active & row	/ addr.		н	Х	L	L	Н	н	Х	V	Rowa	address	
Read &	Auto precha	arge disable	н	х	L	н	L	н	х	V	L	Column	4
column address	Auto precha	arge enable		~					~	v	/ address (Ao~A9, A11)		4,5
Write &	Auto precha	arge disable	н	x	L	н	L	L	х	V L Column address		4	
Auto precharge enable						_	L	~	v	Н	(A0~A9, A11)	4,5	
Burst stop			н	Х	L	Н	н	L	Х		Х		6
Precharge	Bank select	tion	н	х	L	L	н	L	х	V	L	x	
Treenarge	All banks			~					~	Х	н		
		Entry	н	L	Н	Х	Х	Х	х				
Clock suspend or active power down		Entry			L	V	V	V		х			
		Exit	L	Н	Х	Х	Х	Х	Х				
		Entry	н	L	Н	Х	Х	Х	х				
Precharge power	down mode	Lindy		-	L	Н	Н	н			Х		
Precharge power down mode		Exit	L	н	Н	Х	Х	Х	х				
	Exit		L		L	V	V	V					
DQM			н			Х			V		Х		7
No operation com	mand		н	х	Н	Х	Х	Х	х		Х		
	Inallu			^	L	Н	Н	Н		Α			

(V=Valid, X=Don't care, H=Logic high, L=Logic low)

Notes: 1. OP Code : Operand code

Ao ~ A11 & BAo ~ BA1 : Program keys. (@ MRS)

2. MRS can be issued only at all banks precharge state.

A new command can be issued after 2 CLK cycles of MRS.

3. Auto refresh functions are as same as CBR refresh of DRAM. The automatical precharge without row precharge command is meant by "Auto". Auto/self refresh can be issued only at all banks precharge state.

4. BA0 ~ BA1 : Bank select addresses.

If both BA0 and BA1 are "Low" at read, write, row active and precharge, bank A is selected. If BA0 is "High" and BA1 is "Low" at read, write, row active and precharge, bank B is selected. If BA0 is "Low" and BA1 is "High" at read, write, row active and precharge, bank C is selected. If both BA0 and BA1 are "High" at read, write, row active and precharge, bank D is selected. If A10/AP is "High" at row precharge, BA0 and BA1 is ignored and all banks are selected.

5. During burst read or write with auto precharge, new read/write command can not be issued. Another bank read/write command can be issued after the end of burst. New row active of the associated bank can be issued at tRP after the end of burst.

- 6. Burst stop command is valid at every burst length.
- 7. DQM sampled at positive going edge of a CLK and masks the data-in at the very CLK (Write DQM latency is 0), but makes Hi-Z state the data-out of 2 CLK cycles after. (Read DQM latency is 2)

