General Description

The AAT4610 SmartSwitch is a current limited P-channel MOSFET power switch designed for high-side load switching applications. This switch operates with inputs ranging from 2.7 V to 5.5 V , making it ideal for both 3 V and 5 V systems. An integrated current-limiting circuit protects the input supply against large currents which may cause the supply to fall out of regulation. The AAT4610 is also protected from thermal overload which limits power dissipation and junction temperatures. It can be used to control loads that require up to 1 A . Current limit threshold is programmed with a resistor from SET to ground. The quiescent supply current is typically a low $15 \mu \mathrm{~A}$ max. In shutdown mode, the supply current decreases to less than $1 \mu \mathrm{~A}$.
The AAT4610 is available in a Pb-free 5-pin SOT23 package and is specified over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

Features

- Input Voltage Range: 2.7 V to 5.5 V
- Programmable Over-Current Threshold
- Fast Transient Response:
- $<1 \mu s$ Response to Short Circuit
- Low Quiescent Current
- 15 1 A Typical
- $1 \mu \mathrm{~A}$ Max with Switch Off
- $160 \mathrm{~m} \Omega$ Typical $\mathrm{R}_{\mathrm{DS}(0 \mathrm{on})}$
- Only 2.5V Needed for ON/OFF Control
- Under-Voltage Lockout
- Thermal Shutdown
- 4 kV ESD Rating
- UL Approved-File No. E217765
- 5-Pin SOT23 Package
- Temperature Range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Applications

- Hot Swap Supplies
- Notebook Computers
- Peripheral Ports
- Personal Communication Devices

UL Recognized Component

Typical Application

Pin Descriptions

Pin \#	Symbol	Function
1	OUT	P-channel MOSFET drain. Connect 0.47μ F capacitor from OUT to GND.
2	GND	Ground connection
3	SET	Current limit set input. A resistor from SET to ground sets the current limit for the switch.
4	$\overline{\text { ON }}$	Enable input. Two versions are available, active-high and active-low. See Ordering Information for details.
5	IN	P-channel MOSFET source. Connect $1 \mu \mathrm{~F}$ capacitor from IN to GND.

Pin Configuration

SOT23-5
(Top View)

Absolute Maximum Ratings ${ }^{1}$

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Symbol	Description	Value	Units
$\mathrm{V}_{\text {IN }}$	IN to GND	-0.3 to 6	V
$\mathrm{~V}_{\text {ON }}$	$\overline{\mathrm{ON}(\text { ON }) \text { to GND }}$	-0.3 to $\mathrm{V}_{\text {IN }}+0.3$	V
$\mathrm{~V}_{\text {SET, }} \mathrm{V}_{\text {OUT }}$	SET, OUT to GND	-0.3 to $\mathrm{V}_{\text {IN }}+0.3$	V
$\mathrm{I}_{\text {MAX }}$	Maximum Continuous Switch Current	-40 to 150	A
$\mathrm{~T}_{J}$	Operating Junction Temperature Range	300	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {LEAD }}$	Maximum Soldering Temperature (at leads)	4000	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {ESD }}$	ESD Rating ${ }^{2}-\mathrm{HBM}$	V	

Thermal Characteristics ${ }^{3}$

Symbol	Description	Value	Units
Θ_{JA}	Thermal Resistance	150	${ }^{\circ} \mathrm{C} / \mathrm{W}$
P_{D}	Power Dissipation	667	mW

[^0]
Electrical Characteristics

$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Typical Characteristics

Unless otherwise noted, $\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Quiescent Current vs. Temperature

Output Current vs. Output Voltage $\left(R_{\text {SET }}=16 \mathrm{k} \Omega\right)$

Off-Supply Current vs. Temperature

Quiescent Current vs. Input Voltage

$\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ vs. Temperature

Off-Switch Current vs. Temperature

Typical Characteristics

Unless otherwise noted, $\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Turn-On Time vs. Temperature

Turn On

Short-Circuit Through 0.3Ω

Turn-Off Time vs. Temperature

Turn Off
$\left(R_{L}=10 \Omega ; I_{\text {OUT }}=I_{\text {LIMIT }}\right)$

Short-Circuit Through 0.6Ω

Typical Characteristics

Unless otherwise noted, $\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Current Limit vs. Temperature

($\mathrm{R}_{\text {SET }}=22.1 \mathrm{k} \Omega ; \mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$)

Functional Block Diagram

Applications Information

Setting Current Limit

In most applications, the variation in $\mathrm{I}_{\text {LIM }}$ must be taken into account when determining $\mathrm{R}_{\text {SEt. }}$. The $\mathrm{I}_{\text {LIm }}$ variation is due to processing variations from part to part, as well as variations in the voltages at IN (Pin 5) and OUT (Pin 1), plus the operating temperature. See the charts "Current Limit vs. Temperature" and "Output Current vs. Vout" in the Typical Characteristics section of this datasheet. Together, these three factors add up to a $\pm 25 \%$ tolerance (see $\mathrm{I}_{\text {Lim }}$ specification in the Electrical Characteristics section of this datasheet). Figure 1 shows a cold device with a statistically higher current limit, and a hot device with a statistically lower current limit, both with $\mathrm{R}_{\text {SET }}$ equal to $10.5 \mathrm{k} \Omega$. While the chart, " $\mathrm{R}_{\text {SET }}$ vs. $\mathrm{I}_{\text {LIM }}$ " indicates an $\mathrm{I}_{\text {LIM }}$ of 0.7 A with an $\mathrm{R}_{\text {SET }}$ of $10.5 \mathrm{k} \Omega$, this figure shows that the actual current limit will be at least 0.525A, and no greater than 0.880 A .

Figure 1: Output Current Using 10.5k Ω.
To determine $\mathrm{R}_{\text {SET, }}$ start with the maximum current drawn by the load, and multiply it by 1.33 (typical_I Lim $=$ minimum_I Next, refer to "R $\mathrm{R}_{\text {SET }}$ vs. $\mathrm{I}_{\text {LIM" }}$ " and find the $\mathrm{R}_{\text {SET }}$ that corresponds to the typical current limit value. Choose the largest resistor available that is less than or equal to it.

Current Limited Load Switch

For greater precision, the value of $R_{\text {SET }}$ may also be calculated using the $I_{\text {LIM }} R_{\text {SET }}$ product found in the chart " $R_{\text {SET }}$ Coefficient vs. $\mathrm{I}_{\text {Lim }}$ ". The maximum current is derived by multiplying the typical current for the chosen $\mathrm{R}_{\text {SET }}$ in the chart by 1.25. A few standard resistor values are listed in Table 1.

$\mathbf{R}_{\mathbf{s E T}}$ $(\mathbf{k} \Omega)$	Current Limit $\mathbf{(m A)}$	Device Will Not Current Limit Below $(\mathbf{m A})$	Device Always Current Limits Below $(\mathbf{m A})$
40.2	200	150	250
30.9	250	188	313
24.9	300	225	375
22.1	350	263	438
19.6	400	300	500
17.8	450	338	563
16.2	500	375	625
14.7	550	413	688
13.0	600	450	750
10.5	700	525	875
8.87	800	600	1000
7.50	900	675	1125
6.81	1000	750	1250
6.04	1100	825	1375
5.49	1200	900	1500
4.99	1300	975	1625
4.64	1400	1050	1750

Table 1: Current Limit $\mathbf{R}_{\text {SET }}$ Values.

Example: A USB port requires 0.5 A . 0.5 A multiplied by 1.33 is 0.665 A . From the chart " $\mathrm{R}_{\text {SET }}$ Vs. $\mathrm{I}_{\text {LIM, }}$ " $\mathrm{R}_{\text {SET }}$ should be less than $11 \mathrm{k} \Omega .10 .5 \mathrm{k} \Omega$ is a standard value that is a little less than $11 \mathrm{k} \Omega$. The chart gives approximately 0.700 A as a typical $\mathrm{I}_{\text {Lim }}$ value for $10.5 \mathrm{k} \Omega$. Multiplying
0.700 A by 0.75 and 1.25 shows that the AAT4610 will limit the load current to greater than 0.525A but less than 0.875A.

Operation in Current Limit

When a heavy load is applied to the output of the AAT4610, the load current is limited to the value of $\mathrm{I}_{\text {LIM }}$ determined by $\mathrm{R}_{\text {SET }}$ (see Figure 2). Since the load is demanding more current than $\mathrm{I}_{\text {LIM, }}$ the voltage at the output drops. This causes the AAT4610 to dissipate a larger than normal quantity of power, and results in increased die temperature. When the die temperature exceeds an over-temperature limit, the AAT4610 will shut down until is has cooled sufficiently, at which point it will start up again. The AAT4610 will continue to cycle on and off until the load is removed, power is removed, or until a logic high level is applied to ON (Pin 4).

Enable Input

In many systems, power planes are controlled by integrated circuits which run at lower voltages than the power plane itself. The enable input ON (Pin 4) of the AAT4610 has low and high threshold voltages that accommodate this condition. The threshold voltages are compatible with $5 \mathrm{~V} T \mathrm{~L}$ and 2.5 V to 5 V CMOS.

Reverse Voltage

The AAT4610 is designed to control current flowing from IN to OUT. If a voltage is applied to OUT which is greater than the voltage on IN, large currents may flow. This could damage the AAT4610.

Figure 2: Overload Operation.

Ordering Information

Package	Enable	Marking 1	Part Number (Tape and Reel) 2
SOT23-5	$\overline{O N}$ (active low)	AAXYY	AAT4610IGV-T1
SOT23-5	ON (active high)	AWXYY	AAT4610IGV-1-T1

Skyworks Green ${ }^{\text {TM }}$ products are compliant with all applicable legislation and are halogen-free. For additional information, refer to Skyworks Definition of Green ${ }^{T M}$, document number SQ04-0074.

Package Information

SOT23-5

All dimensions in millimeters

1. $\mathrm{XYY}=$ assembly and date code.
2. Sample stock is generally held on all part numbers listed in BOLD.

Copyright © 2012 Skyworks Solutions, Inc. All Rights Reserved.
Information in this document is provided in connection with Skyworks Solutions, Inc. ("Skyworks") products or services. These materials, including the information contained herein, are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Skyworks may change its documentation, products, services, specifications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.

No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided hereunder, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks Terms and Conditions of Sale.

THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 use or sale.

 design, or damage to any equipment resulting from the use of Skyworks products outside of stated published specifications or parameters.
 identification purposes only, and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at www.skyworksinc.com, are incorporated by reference.

[^0]: specified is not implied. Only one Absolute Maximum Rating should be applied at any one time.
 2. Human body model is a 100 pF capacitor discharged through a $1.5 \mathrm{k} \Omega$ resistor into each pin.
 3. Mounted on a demo board.

