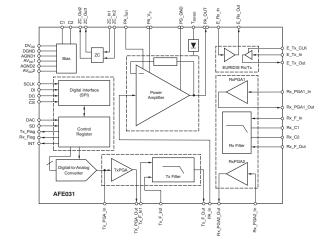


www.ti.com SBOS531 – SEPTEMBER 2010

Powerline Communications Analog Front-End


Check for Samples: AFE031

FEATURES

- Integrated Powerline Driver with Thermal and Overcurrent Warnings
- Large Output Swing: 13V_{PP} at 1.5A (15V supply)
- Low Power Consumption 15mW (Receive Mode)
- Shutdown Override
- Receive Sensitivity 15μV_{RMS}, Typ
- Supply Voltage: 7V to 24V
- Supports EN50065 Cenelec Bands A, B, C, D
- Supports FSK and OFDM
- Programmable Gain Control
- Four-Wire Serial Interface
- Two Integrated Zero Crossing Detectors
- Euridis 1 & 2 Transceiver Buffer
- 48-Pin QFN PowerPAD™ Package
- Extended Temperature Range: -40°C to +125°C

APPLICATIONS

- eMetering
- Lighting
- Solar

DESCRIPTION

The AFE031 is a low-cost, integrated powerline communications analog front-end (AFE) device that is capable of a transformer-coupled connection to the powerline while under the control of a DSP or microcontroller. It is ideal for driving high-current, low-impedance lines that drive up to 1.5A into reactive loads. The integrated receiver is able to detect signals down to $15\mu V_{RMS}$ and is capable of a wide range of gain options to adapt to varying input signal conditions. This monolithic integrated circuit provides high reliability in demanding powerline communications applications.

The AFE031 transmit power amplifier operates from a single supply in the range of 7V to 26V. At maximum output current, a wide output swing provides a $13V_{PP}$ ($I_{OUT} = 1.5A$) capability with a nominal 15V supply.

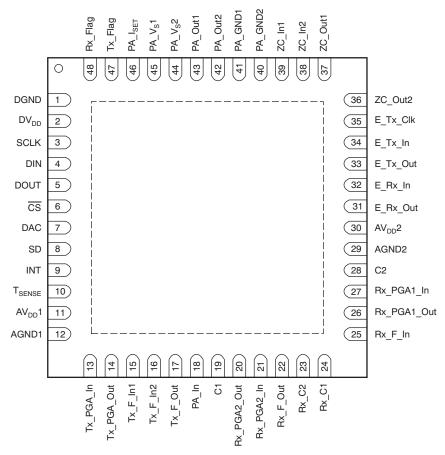
The AFE031 is internally protected against overtemperature conditions. It is also provides an accurate, user-selected, current limit. An interrupt output is provided that indicates current limit, thermal limit, and power lost. It also has a Shutdown pin that can be used to quickly put the device into its lowest power state. Through the four-wire SPI™, the user can enable or disable each functional block to optimize power dissipation.

The AFE031 is housed in a thermally-enhanced, surface-mount PowerPAD package (QFN-48). Operation is specified over the extended industrial temperature range, -40°C to +125°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PowerPAD is a trademark of Texas Instruments.

SPI is a trademark of Motorola, Inc.


All other trademarks are the property of their respective owners.

SBOS531 - SEPTEMBER 2010

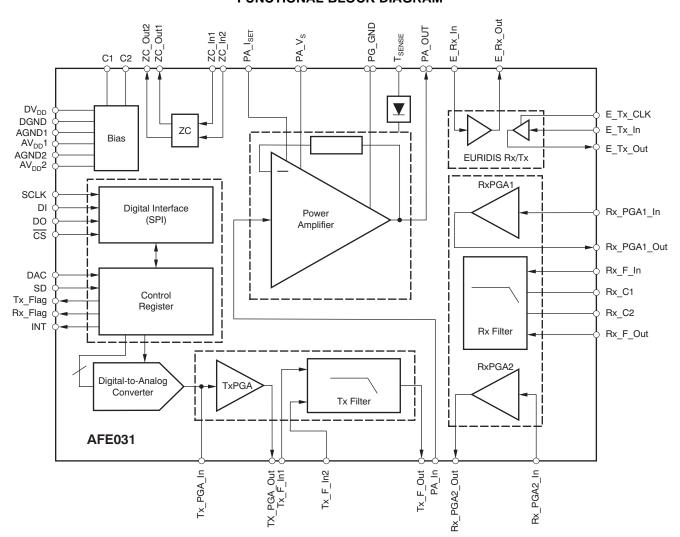
PIN ASSIGNMENTS

RGZ PACKAGE QFN-48 (TOP VIEW)

Exposed thermal pad is connected to ground.

PIN DESCRIPTIONS

AF	E031	
PIN NO.	NAME	DESCRIPTION
1	DGND	Digital Ground
2	DV_DD	Digital Supply
3	SCLK	SPI Serial Clock
4	DIN	SPI Digital Input
5	DOUT	SPI Digital Output
6	<u>cs</u>	SPI Digital Chip Select
7	DAC	DAC Mode Select
8	SD	System Shutdown
9	INT	Interrupt on Overcurrent, Thermal, and Power Lost
10	T _{SENSE}	Temp Sensing Diode (Anode)
11	AV _{DD} 1	Analog Supply Pin (tied internally to AV _{DD} 2)
12	AGND1	Analog Ground (tied internally to AGND2)
13	Tx_PGA_In	Transmit PGA Input
14	Tx_PGA_Out	Transmit PGA Output
15	Tx_F_ln1	Transmit Filter Input 1



PIN DESCRIPTIONS (continued)

AF	E031	
PIN NO.	NAME	DESCRIPTION
16	Tx_F_In2	Transmit Filter Input 2
17	Tx_F_Out	Transmit Filter Output
18	PA_In	Power Amplifier Input
19	C1	Power Amplifier Noise Reducing Capacitor
20	Rx_PGA2_Out	Receiver PGA(2) Output
21	Rx_PGA2_In	Receiver PGA(2) Input
22	Rx_F_Out	Receiver Filter Output
23	Rx_C2	Receiver External Frequency Adjust
24	Rx_C1	Receiver External Frequency Adjust
25	Rx_F_In	Receiver Filter Input
26	Rx_PGA1_Out	Receiver PGA(1) Output
27	Rx_PGA1_In	Receiver PGA(1) Input
28	C2	Receiver Noise Reducing Capacitor
29	AGND2	Analog Ground(tied internally to AGND1)
30	AV _{DD} 2	Analog Supply (tied internally to AV _{DD} 1)
31	E_Rx_Out	Euridis Receiver Output
32	E_Rx_In	Euridis Receiver Input
33	E_Tx_Out	Euridis Transmitter Output
34	E_Tx_In	Euridis Transmitter Input
35	E_Tx_Clk	Euridis Transmitter Clock Input
36	ZC_Out2	Zero Crossover Detector Output
37	ZC_Out1	Zero Crossover Detector Output
38	ZC_In2	Zero Crossover Detector Input
39	ZC_In1	Zero Crossover Detector Input
40	PA_GND2	Power Amplifier Ground
41	PA_GND1	Power Amplifier Ground
42	PA_Out2	Power Amplifier Output
43	PA_Out1	Power Amplifier Output
44	PA_V _S 2	Power Amplifier Supply
45	PA_V _S 1	Power Amplifier Supply
46	PA_I _{SET}	Power Amplifier Current Limit Set
47	Tx_Flag	Transmitter Ready Flag
48	Rx_Flag	Receiver Ready Flag

FUNCTIONAL BLOCK DIAGRAM

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications Amplifiers amplifier.ti.com Audio www.ti.com/audio **Data Converters** dataconverter.ti.com Automotive www.ti.com/automotive **DLP® Products** www.dlp.com Communications and www.ti.com/communications Telecom DSP Computers and www.ti.com/computers dsp.ti.com Peripherals Clocks and Timers www.ti.com/clocks Consumer Electronics www.ti.com/consumer-apps Interface interface.ti.com **Energy** www.ti.com/energy Industrial www.ti.com/industrial Logic logic.ti.com Power Mgmt power.ti.com Medical www.ti.com/medical Microcontrollers microcontroller.ti.com www.ti.com/security Security **RFID** www.ti-rfid.com Space, Avionics & www.ti.com/space-avionics-defense Defense RF/IF and ZigBee® Solutions www.ti.com/lprf Video and Imaging www.ti.com/video www.ti.com/wireless-apps Wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2010, Texas Instruments Incorporated

