

Data sheet acquired from Harris Semiconductor SCHS288

8-Input Universal Shift/Storage Register with Common Parallel I/O Pins

CD54/74AC/ACT299 - Asynchronous Reset CD54/74AC/ACT323 - Synchronous Reset

Type Features:

- Buffered inputs
- Typical propagation delay: 6 ns @ Vcc = 5 V, T_A = 25° C, C_L = 50 pF

The RCA CD54/74AC299 and CD54/74AC323 and the CD54/74ACT299 and CD54/74ACT323 are 3-state, 8-input universal shift/storage registers with common parallel I/O pins. These devices use the RCA ADVANCED CMOS technology. These registers have four synchronous-operating modes controlled by the two select inputs as shown in the Mode Select (S0, S1) table. The Mode Select, the Serial Data (DSO, DS7), and the Parallel Data (I/O0 - I/O7) respond only to the LOW-TO-HIGH transition of the clock (CP) pulse. S0, S1 and Data inputs must be present one setup time prior to the positive transition of the clock.

With the CD54/74AC/ACT299, the Master Reset (MR) is an asynchronous active-LOW input. When MR is LOW, the register is cleared regardless of the status of all other inputs. With the CD54/74AC/ACT323, the Master Reset (MR) clears the register in sync with the clock input. The register can be expanded by cascading same units by tying the serial output (QO) to the serial data (DS7) input of the preceding register, and tying the serial output (Q7) to the serial data (DSO) input of the following register. Recirculating the (n x 8) bits is accomplished by tying the Q7 of the last stage to the DSO of the first stage.

The 3-state input/output (I/O) port has three modes of operation:

- Both Output Enable (OE1 and OE2) inputs are LOW and S0 or S1 or both are LOW; the data in the register is present at the eight outputs.
- When both S0 and S1 are HIGH, I/O terminals are in the high-impedance state but being input ports, ready for parallel data to be loaded into eight registers with one clock transition regardless of the status of OE1 and OE2.

Family Features:

- Exceeds 2-kV ESD Protection MIL-STD-883, Method 3015
- SCR-Latchup-resistant CMOS process and circuit design
- Speed of bipolar FAST*/AS/S with significantly reduced power consumption
- Balanced propagation delays
- AC types feature 1.5-V to 5.5-V operation and balanced noise immunity at 30% of the supply
- ± 24-mA output drive current
 - Fanout to 15 FAST* ICs
 - Drives 50-ohm transmission lines

*FAST is a Registered Trademark of Fairchild Semiconductor Corp.

 Either one of the two Output Enable inputs being HIGH will force I/O terminals to be in the off state. It is noted that each I/O terminal is a 3-state output and a CMOS buffer input.

The CD74AC/ACT299 and CD74AC/ACT323 are supplied in 20-lead dual-in-line plastic packages (E suffix) and in 20-lead dual-in-line small-outline plastic packages (M suffix). Both package types are operable over the following temperature ranges: Commercial (0 to 70°C); Industrial (-40 to +85°C); and Extended Industrial/Military (-55 to +125°C).

The CD54AC/ACT299 and CD54AC/ACT323, available in chip form (H suffix), are operable over the -55 to +125°C temperature range.

File Number 1958

MODE SELECT — FUNCTION TABLE REGISTER OPERATING MODES

				INPUTS	3	,		REGISTER OUTPUTS				
FUNCTION	MR	СР	S0	S1	DS0	DS7	I/O _n	Q0	Q1		Q6	Q 7
Reset (Clear)	L	X.	Х	Х	X	Х	Х	L	L		L	L
Shift Right	Н	- /-	h∈	ı	ı	Х	Х	L	qo		Q ₅	Q ₆
·	н		h	1	h	×	×	Н	\mathbf{q}_{o}		\mathbf{q}_{5}	Q ₆
Shift Left	Н		1	h ·	Х	1	Х	q ₁	q ₂		Q ₇	L
	H-		1	h	Х	h	Х	q ₁	q_2		q_7	Н
Hold (do nothing)	Н		ı	1	Х	Х	Х	q _o	q ₁		q ₆	Q ₇
Parallel Load	Н		h	h	Х	X	I	L	L		L	L
	Н		h	h	×	×	h	Н	Н		Н	Н

^{*}On CD54/74AC/ACT323, CP must be in transition from the LOW-to-HIGH state to Reset (Clear).

MODE SELECT — FUNCTION TABLE 3-STATE I/O PORT OPERATING MODE

FUNCTION				INPUTS		INPUTS/OUTPUTS
FUNCTION	OE1	OE1 OE2 SO S1		Qn (Register)	I/O ₀ I/O ₇	
Read Register	L	L	L	Х	L	L .
	L	L	L	X	Н	Н
	L	L	х	L	L	L
	L	L	x	L	Н	Н
Load Register	X	Х	Н	Н	Qn = 1/O _n	I/O _n = Inputs
Disable I/O	Н	Х	X	Х	X	(Z)
	×	н	x	X	Χ	(Z)

H = Input voltage high level.

h = Input voltage high one set-up time prior clock transition.

L = Input voltage low level.

I = Input voltage low one set-up time prior clock transition.

q_n = Lower case letters indicate the state of the referenced output one set-up time prior clock transition.

X = Voltage level on logic status don't care.

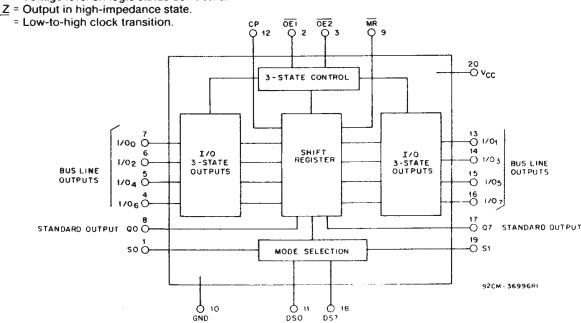


Fig. 1 - Functional diagram

MAXIMUM RATINGS, Absolute-Maximum Values:
DC SUPPLY-VOLTAGE (V _{cc})0.5 to 6 V
DC INPUT DIODE CURRENT, I _{IK} (for V _I < -0.5 V or V _I > V _{CC} + 0.5 V)
DC OUTPUT DIODE CURRENT, l_{OK} (for $V_0 < -0.5$ V or $V_0 > V_{CC} + 0.5$ V)
DC OUTPUT SOURCE OR SINK CURRENT per Output Pin, I_0 (for $V_0 > -0.5$ V or $V_0 < V_{\infty} + 0.5$ V) ± 50 mA
DC V_{cc} or GROUND CURRENT (I_{cc} or I_{GND})
POWER DISSIPATION PER PACKAGE (PD):
For $T_A = -55$ to $+100^{\circ}$ C (PACKAGE TYPE E)
For $T_A = +100$ to $+125$ °C (PACKAGE TYPE E)
For $T_A = -55$ to $+70$ °C (PACKAGE TYPE M)
For T _A = +70 to +125°C (PACKAGE TYPE M)
OPERATING-TEMPERATURE RANGE (T _A)55 to +125°C
STORAGE TEMPERATURE (T _{stg})65 to +150°C
LEAD TEMPERATURE (DURING SOLDERING):
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s maximum+265°C
Unit inserted into PC board min. thickness 1/16 in. (1.59 mm) with solder contacting lead tips only +300°C
*For up to 4 outputs per device; add \pm 25 mA for each additional output.

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, normal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERIOTICS	LIN	IITS	LIAUTO
CHARACTERISTICS	MIN.	MAX.	UNITS
Supply-Voltage Range, V _{CC} *: (For T _A = Full Package-Temperature Range)			
AC Types ACT Types	1.5 4.5	5.5 5.5	V
DC Input or Output Voltage, V _i , V _o	0	Vcc	V
Operating Temperature, T _A	-55	+125	°C
Input Rise and Fall Slew Rate, dt/dv at 1.5 V to 3 V (AC Types) at 3.6 V to 5.5 V (AC Types) at 4.5 V to 5.5 V (ACT Types)	0 0 0	50 20 10	ns/V ns/V ns/V

^{*}Unless otherwise specified, all voltages are referenced to ground.

STATIC ELECTRICAL CHARACTERISTICS: AC Series

	 .					AMBIEN'	T TEMPE	RATURE	(T _A) - °	С	
CHARACTERIST	ICS	TEST COI	NDITIONS	V _{cc}	+	25	-40 t	o +85.	-55 to	+125	UNITS
		V, (V)	l _o (mA)	(V)	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.]
High-Level Input Voltage	V _{IH}			1.5 3 5.5	1.2 2.1 3.85		1.2 2.1 3.85	=	1.2 2.1 3.85		V
Low-Level Input Voltage	ViL			1.5 3 5.5	_	0.3 0.9 1.65	_	0.3 0.9 1.65	_	0.3 0.9 1.65	V
High-Level Output			-0.05	1.5	1.4		1.4		1.4		
Voltage	V _{OH}	VIH	-0.05	3	2.9	l —	2.9	_	2.9	_]
		or	-0.05	4.5	4.4		4.4	_	4.4	_]
		V _{IL}	-4	3	2.58	_	2.48	_	2.4	_	\ \
			-24	4.5	3.94		3.8		3.7		
		#, * {	-75	5.5		_	3.85	_		_	
		" ' }	-50	5.5		_			3.85		
Low-Level Output			0.05	1.5	_	0.1		0.1	_	0.1	
Voltage	Vol	ViH	0.05	3	_	0.1		0.1		0.1	
		or	0.05	4.5	_	0.1		0.1		0.1]
		Vil	12	3		0.36	_	0.44		0.5	V
			24	4.5	_	0.36		0.44		0.5	
		#, * {	75	5.5		_		1.65			
		"· l	50	5.5			_			1.65	
Input Leakage Current	t ₁	V _{cc} or GND		5.5	_	±0.1		±1	_	±1	μА
3-Stage Leakage Current	loz	VIH Or VIL Vo= Vcc Or GND		5.5		±0.5	_	±5		±10	μΑ
Quiescent Supply Current, MSI	tcc	V _{cc} or GND	0	5.5	_	8	· <u>-</u>	80	-	160	μΑ

[#]Test one output at a time for a 1-second maximum duration. Measurement is made by forcing current and measuring voltage to minimize power dissipation.
*Test verifies a minimum 50-ohm transmission-line-drive capability at +85°C, 75 ohms at +125°C.

STATIC ELECTRICAL CHARACTERISTICS: ACT Series

	41.0					AMBIEN	T TEMPE	RATURE	E (T _A) - °	С	
CHARACTERIST	ICS	TEST CO	NDITIONS	V _{cc}	+	25	-40 t	o +85	-55 to	+125	UNITS
		V ₁ (V)	l _o (mA)	(V)	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
High-Level Input Voltage	ViH			4.5 to 5.5	2	_	2	_	2	_	v
Low-Level Input Voltage	VIL			4.5 to 5.5		0.8	_	0.8	_	0.8	V
High-Level Output		ViH	-0.05	4.5	4.4	<u> </u>	4.4	_	4.4		
Voltage	V _{OH}	or V _{IL}	-24	4.5	3.94		3.8		3.7	l –]
		#, * {	-75	5.5	_	_	3.85	_	_	_] v
			-50	5.5					3.85		ļ
Low-Level Output		V _{IH}	0.05	4.5		0.1	–	0.1	–	0.1	
Voltage	Vol	or V _{IL}	24	4.5		0.36	_	0.44	_	0.5	v
		#, * {	75	5.5	_	_	_	1.65	_	_	
		" ' [50	5.5	_	_		_	_	1.65	
Input Leakage Current	l ₁	V _{cc} or GND		5.5	_	±0.1	_	±1	-	±1	μΑ
3-State Leakage Current	loz	V _{IH} or V _{IL} V _O or GND		5.5		±0.5		±5	_	±10	μΑ
Quiescent Supply Current, MSI	lcc	V _{cc} or GND	0	5.5	_	8	_	80	_	160	μΑ
Additional Quiescent Current per Input P TTL Inputs High 1 Unit Load	Supply in. Δt _{cc}	V _{cc} -2.1		4.5 to 5.5		2.4		2.8	_	3	mA

[#]Test one output at a time for a 1-second maximum duration. Measurement is made by forcing current and measuring voltage to minimize power dissipation.

ACT INPUT LOADING TABLE

INIOLIT	UNIT LOADS*				
INPUT	299	323			
S1, S0, OE1, OE2	0.83	0.83			
1/O ₀ - 1/O ₇ , CP, DS0, DS7	0.67	0.67			
MR	1.33	0.67			

^{*}Unit load is ΔI_{CC} limit specified in Static Characteristics Chart, e.g., 2.4 mA max. @ 25° C.

^{*}Test verifies a minimum 50-ohm transmission-line-drive capability at +85°C, 75 ohms at +125°C.

CD54/74AC299, CD54/74AC323 CD54/74ACT299, CD54/74ACT323

PREREQUISITE FOR SWITCHING: AC Series

			AMBII	ENT TEMPE	RATURE (T	۸) - °C	Ţ.
CHARACTERISTICS	SYMBOL	V _{cc}	-40 t	o +85	-55 to	+125	UNITS
		(V)	MIN.	MAX.	MIN.	MAX.	1
Setup Time S1, S0, to CP	tsu	1.5 3.3* 5†	99 11.1 7.9	_	113 12.6 9		ns
Hold Time S1, S0 to CP	tн	1.5 3.3 5	0 0	=	0 0		ns
Setup Time (I/O)n, DS0, DS7 to CP	tsu	1.5 3.3 5	49 5.5 3.9	=	56 6.3 4.5	_ _ _	ns
Hold Time (I/O)n, DS0, DS7 to CP	tsu	1.5 3.3 5	0 0 0		0 0 0	_ _ _	ns
Setup Time MR to CP (323)	tsu	1.5 3.3 5	61 6.8 4.8	=	69 7.8 5.5		ńs
Hold Time MR to CP (323)	tн	1.5 3.3 5	0 0 0	-	0 0 0	<u>-</u> -	ns
Maximum CP Frequency	fmax	1.5 3.3 5	9 78 108		8 68 95	— —	MHz
CP Pulse Width	tw	1.5 3.3 5	57 6.4 4.6	_ _ _	65 7.3 5.2		ns
MR Pulse Width	tw	1.5 3.3 5	55 6.1 4.4		63 7 5	<u>-</u>	ns
Recovery Time MR to CP 299	trec	1.5 3.3 5	55 6.1 4.4	<u>-</u> -	63 7 5	- - -	ns

*3.3 V: min. is @ 3 V †5 V: min is @ 4.5 V

SWITCHING CHARACTERISTICS: AC Series; t, t = 3 ns, CL = 50 pF

	· .		AMBI	ENT TEMPE	RATURE (Γ _Λ) - °C	
CHARACTERISTICS	SYMBOL	V _{cc}		o +85	1	0 +125	UNITS
		(V) .	MIN.	MAX.	MIN.	MAX.	1
Propagation Delays: CP to Q0, Q7	t _{PLH} t _{PHL}	1.5 3.3* 5†	4.7 3.3	147 16.5 11.7	 4.5 3.2	162 18.1 12.9	ns
CP to (I/O)n	t _{PLH} t _{PHL}	1.5 3.3 5	4.9 3.5	154 17.2 12.3	4.7 3.4	169 18.9 13.5	ns
MR to Q0, Q7 (299 only)	t _{PLH} t _{PHL}	1.5 3.3 5	- 4 2.9	127 14.3 10.2	 3.9 2.8	140 15.7 11.2	ns
MR to (I/O)n	t _{PLH} t _{PHL}	1.5 3.3 5	5 3.6	158 17.7 12.6	 4.9 3.5	174 19.5 13.9	ns
Enable and Disable Times	tpzi tpzh tpiz tphz	1.5 3.3 5	5.8 3.8	169 20.4 13.5	5.6 3.7	186 22.4 14.9	ns
Power Dissipation Capacitance	C _{PD} §		280	Тур.	280	Тур.	pF
Input Capacitance	Cı	_	_	10		10	pF
3-State Output Capacitance	Co	_	_	15		15	pF

*3.3 V: min. is @ 3.6 V max. is @ 3 V

†5 V: min. is @ 5.5 V max. is @ 4.5 V

§C_{PD} is used to determine the dynamic power consumption, per function.

 $P_D = C_{PD}V_{CC}^2 f_i + \Sigma (C_L V_{CC}^2 f_o)$ where $f_i = input$ frequency

 $f_o = output frequency$

 C_L = output load capacitance

 V_{CC} = supply voltage.

PREREQUISITE FOR SWITCHING: ACT Series

		.,	AMBI	ENT TEMP	ERATURE (Γ _A) - °C	UNITS
CHARACTERISTICS	SYMBOL	V _{cc} (V)	-40	to +85	-55 t	o +125	
		(*/	MIN.	MAX.	MIN.	MAX.	1
Setup Time S1, S0 to CP	tsu	5*	7.9	_	9	_	ns
Hold Time S1, S0 to CP	tii	5	0		0	_	ns
Setup Time (I/O)n, DS0, DS7 to CP	tsu	5	3.9	_	4.5	_	ns
Hold Time (I/O)n, DS0, DS7 to CP	ŧн	5	0	_	0	_	ns
Setup Time MR to CP (323)	tsu	5*	4.8	_	5.5	-	ns
Hold Time MR to CP (323)	tн	5	0	_	0	_	ns
Maximum CP Frequency	f _{max}	5	103	_	90		MHz
CP Pulse Width	tw	5	4.8		5.5		ns
MR Pulse Width	tw	5	4.4	_	5	_	ns
Recovery Time MR to CP (299)	trec	5	4.4	_	5		ns

*5 V: min. is @ 4.5 V

SWITCHING CHARACTERISTICS: ACT Series; t,, t, = 3 ns, CL = 50 pF

			AMBII	(A) - °C				
CHARACTERISTICS	SYMBOL	V _{cc} (V)	-40 t	o +85	-55 to	+125	UNITS	
	·	(*)	MIN.	MAX.	MIN.	MAX.	<u> </u>	
Propagation Delays: CP to Q0, Q7	t _{РСН}	5*	3.3	11.7	3.2	12.9	ns	
CP to (I/O)n	t _{РЕН} t _{РНL}	5	43.7	13.2	3.6	14.5	ns	
MR to Q0, Q7 (299 only)	t _{PLH} t _{PHL}	5	3.1	11.1	3.1	12.2	ns	
MR to (I/O)n	t _{РLН} t _{РНL}	5	4.8	16.9	4.7	18.6	ns	
Enable and Disable Times	t _{PLZ} t _{PHZ} t _{PZL} t _{PZH}	5	3.8	13.5	3.7	14.9	ns	
Power Dissipation Capacitance	C _{PD} §		280	Тур.	280	Тур.	pF	
Input Capacitance	Cı		_	10		10	pF	
3-State Output Capacitance	Co			15		15	pF	

*5 V: min. is @ 5.5 V max. is @ 4.5 V C_{PD} is used to determine the dynamic power consumption, per function. $P_D = C_{PD} V_{CC}^2 f_i + \Sigma (C_L V_{CC}^2 f_o) + V_{CC} \Delta I_{CC}$ where f_i = input frequency

f_o = output frequency C_L = output load capacitance

 $V_{cc} = supply voltage$.

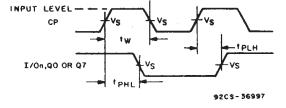


Fig. 2 - Clock prerequisite and propagation delays.

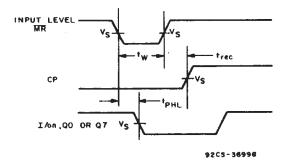


Fig. 3 - Master Reset prerequisite and propagation delays.

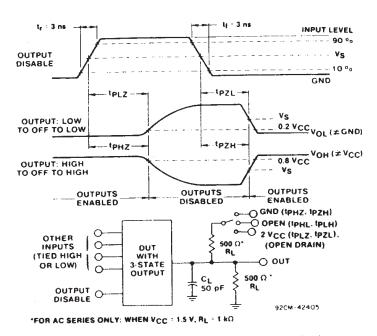


Fig. 4 - Three-state propagation delay times and test circuit.

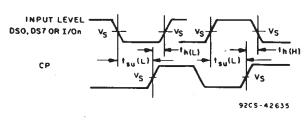


Fig. 5 - Data prerequisite times.

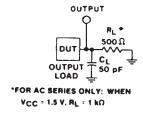


Fig. 6 - Test circuit.

	CD54/74AC	CD54/74ACT
Input Level	Vcc	3 V
Input Switching Voltage, Vs	0.5 V _{CC}	1.5 V
Output Switching Voltage, Vs	0.5 V _{CC}	0.5 V _{CC}

www.ti.com 15-Oct-2009

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp (3)
CD54AC299F3A	ACTIVE	CDIP	J	20	1	TBD	A42	N / A for Pkg Type
CD54ACT299F3A	ACTIVE	CDIP	J	20	1	TBD	A42	N / A for Pkg Type
CD74AC299M96	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74AC299M96E4	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74AC299M96G4	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74AC323M	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74AC323MG4	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74ACT299M	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74ACT299M96	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74ACT299M96E4	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74ACT299M96G4	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
CD74ACT299MG4	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

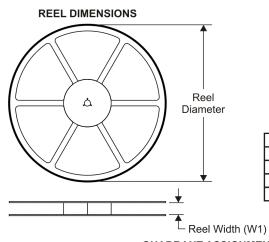
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

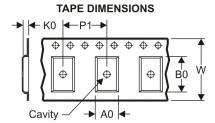
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

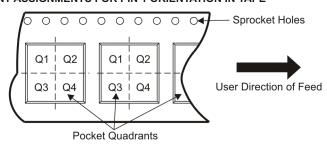
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI


PACKAGE OPTION ADDENDUM

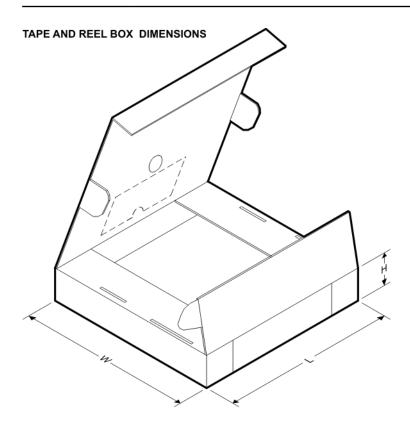

www.ti.com 15-Oct-2009

to Customer on an annual basis.


TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

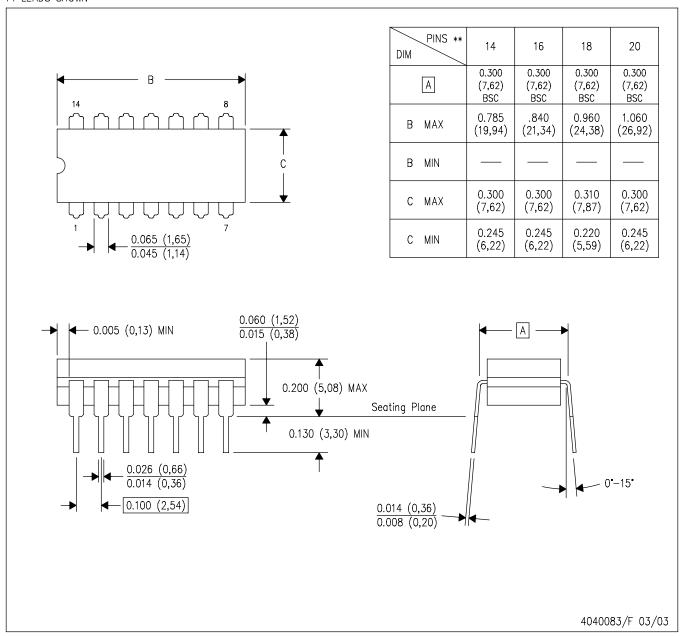
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal

Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CD74AC299M96	SOIC	DW	20	2000	330.0	24.4	10.8	13.0	2.7	12.0	24.0	Q1
CD74ACT299M96	SOIC	DW	20	2000	330.0	24.4	10.8	13.0	2.7	12.0	24.0	Q1

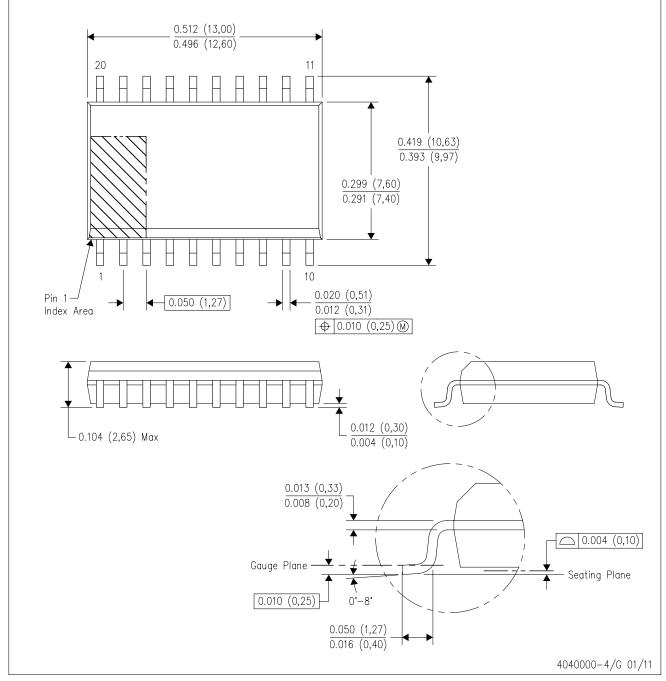
PACKAGE MATERIALS INFORMATION


11-Mar-2008

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CD74AC299M96	SOIC	DW	20	2000	346.0	346.0	41.0
CD74ACT299M96	SOIC	DW	20	2000	346.0	346.0	41.0

14 LEADS SHOWN

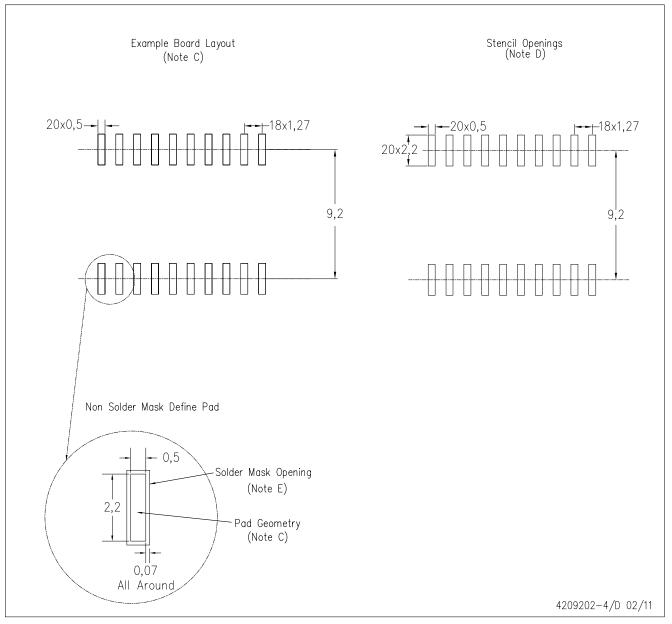


NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

DW (R-PDSO-G20)

PLASTIC SMALL OUTLINE


NOTES: A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-013 variation AC.

DW (R-PDSO-G20)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	<u>power.ti.com</u>	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com	Wireless	www.ti.com/wireless-apps
RF/IF and ZigBee® Solutions	www.ti.com/lprf		

TI E2E Community Home Page

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated

e2e.ti.com