High Precision, Low Noise OPERATIONAL AMPLIFIERS

FEATURES

\author{

- LOW NOISE: $3 n V / \sqrt{H z}$
 - WIDE BANDWIDTH:
 OPA227: 8MHz, 2.3V/ $\mu \mathrm{s}$
 OPA228: $33 \mathrm{MHz}, 10 \mathrm{~V} / \mu \mathrm{s}$
 - SETTLING TIME: $5 \mu \mathrm{~s}$
 (significant improvement over OP-27)
 - HIGH CMRR: 138dB
 - HIGH OPEN-LOOP GAIN: 160dB
 - LOW INPUT BIAS CURRENT: 10nA max
 - LOW OFFSET VOLTAGE: $75 \mu \mathrm{~V}$ max
 - WIDE SUPPLY RANGE: $\pm 2.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$
 - OPA227 REPLACES OP-27, LT1007, MAX427
 - OPA228 REPLACES OP-37, LT1037, MAX437
 - SINGLE, DUAL, AND QUAD VERSIONS
}

APPLICATIONS

- DATA ACQUISITION
- TELECOM EQUIPMENT
- GEOPHYSICAL ANALYSIS
- VIBRATION ANALYSIS
- SPECTRAL ANALYSIS
- PROFESSIONAL AUDIO EQUIPMENT
- ACTIVE FILTERS
- POWER SUPPLY CONTROL

DESCRIPTION

The OPA227 and OPA228 series op amps combine low noise and wide bandwidth with high precision to make them the ideal choice for applications requiring both ac and precision dc performance.
The OPA227 is unity-gain stable and features high slew rate $(2.3 \mathrm{~V} / \mu \mathrm{s})$ and wide bandwidth (8 MHz). The OPA228 is optimized for closed-loop gains of 5 or greater, and offers higher speed with a slew rate of $10 \mathrm{~V} / \mu$ s and a bandwidth of 33 MHz .
The OPA227 and OPA228 series op amps are ideal for professional audio equipment. In addition, low quiescent current and low cost make them ideal for portable applications requiring high precision.
The OPA227 and OPA228 series op amps are pin-for-pin replacements for the industry standard OP-27 and OP-37 with substantial improvements across the board. The dual and quad versions are available for space savings and perchannel cost reduction.
The OPA227, OPA228, OPA2227, and OPA2228 are available in DIP-8 and SO-8 packages. The OPA4227 and OPA4228 are available in DIP-14 and SO-14 packages with standard pin configurations. Operation is specified from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

SPICE model available for OPA227 at www.ti.com

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
All trademarks are the property of their respective owners.

SPECIFICATIONS: $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$

OPA227 Series

At $T_{A}=+25^{\circ} \mathrm{C}$, and $R_{L}=10 \mathrm{k} \Omega$, unless otherwise noted.
Boldface limits apply over the specified temperature range, $T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

PARAMETER	CONDITION	$\begin{aligned} & \text { OPA227P, U } \\ & \text { OPA2227P, U } \end{aligned}$			OPA227PA, UA OPA2227PA, UA OPA4227PA, UA			UNITS		
		MIN	TYP	MAX	MIN	TYP	MAX			
OFFSET VOLTAGE Input Offset Voltage $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}$ vs Temperature $\begin{gathered} \mathrm{V}_{\mathrm{OS}} \\ \mathrm{dV}_{\mathrm{OS}} / \mathrm{dT} \end{gathered}$ vs Power Supply $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}$ vs Time Channel Separation (dual, quad)	$\mathrm{V}_{\mathrm{S}}= \pm 2.5 \mathrm{~V} \text { to } \pm 18 \mathrm{~V}$ $\begin{gathered} \mathrm{dc} \\ \mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega \end{gathered}$		$\begin{gathered} \pm 5 \\ \\ \pm 0.1 \\ \pm 0.5 \\ \\ 0.2 \\ 0.2 \\ 110 \end{gathered}$	$\begin{gathered} \pm 75 \\ \pm 100 \\ \pm 0.6 \\ \pm 2 \\ \pm 2 \end{gathered}$		$\begin{gathered} \pm 10 \\ \pm 0.3 \\ * \\ * \\ * \\ * \end{gathered}$	$\begin{gathered} \pm 200 \\ \pm 200 \\ \pm 2 \\ * \\ * \end{gathered}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{V} / \mathrm{V}$ $\mu \mathrm{V} / \mathrm{V}$ $\mu \mathrm{V} / \mathrm{mo}$ $\mu \mathrm{V} / \mathrm{V}$ dB		
INPUT BIAS CURRENT Input Bias Current $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}$ Input Offset Current $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}$			$\begin{aligned} & \pm 2.5 \\ & \pm 2.5 \end{aligned}$	$\begin{aligned} & \pm 10 \\ & \pm 10 \\ & \pm 10 \\ & \pm 10 \end{aligned}$		* *	$\begin{aligned} & * \\ & * \\ & * \\ & * \\ & * \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \\ & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$		
NOISE Input Voltage Noise, $f=0.1 \mathrm{~Hz}$ to 10 Hz $\text { Input Voltage Noise Density, } \begin{aligned} f & =10 \mathrm{~Hz} \quad e_{n} \\ f & =100 \mathrm{~Hz} \\ f & =1 \mathrm{kHz} \end{aligned}$ Current Noise Density, $f=1 \mathrm{kHz}$			90 15 3.5 3 3 0.4			$\begin{aligned} & * \\ & * \\ & * \\ & * \\ & * \\ & * \\ & * \\ & * \end{aligned}$		nVp-p nVrms $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ $\mathrm{pA} / \sqrt{\mathrm{Hz}}$		
INPUT VOLTAGE RANGE Common-Mode Voltage Range $\quad \mathrm{V}_{\mathrm{CM}}$ Common-Mode Rejection CMRR $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CM}}=(\mathrm{V}-)+2 \mathrm{~V}$ to $(\mathrm{V}+)-2 \mathrm{~V}$	$\begin{gathered} (\mathrm{V}-)+2 \\ 120 \\ 120 \end{gathered}$	138	(V+)-2	*	*	*	$\begin{gathered} \mathrm{V} \\ \mathrm{~dB} \\ \mathrm{~dB} \end{gathered}$		
INPUT IMPEDANCE Differential Common-Mode	$\mathrm{V}_{\mathrm{CM}}=(\mathrm{V}-)+2 \mathrm{~V}$ to $(\mathrm{V}+)-2 \mathrm{~V}$		$\begin{gathered} 10^{7}\| \| 12 \\ 10^{9}\| \| 3 \end{gathered}$			*		$\begin{aligned} & \Omega \\| \mathrm{pF} \\ & \Omega \\| \mathrm{pF} \end{aligned}$		
OPEN-LOOP GAIN Open-Loop Voltage Gain $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & \mathrm{~T}_{A}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} V_{O}=(\mathrm{V}-)+2 \mathrm{~V} \text { to }(\mathrm{V}+)-2 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ \mathrm{~V}_{\mathrm{O}}=(\mathrm{V}-)+3.5 \mathrm{~V} \text { to }(\mathrm{V}+)-3.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=600 \Omega \end{gathered}$	$\begin{aligned} & 132 \\ & 132 \\ & 132 \\ & 132 \end{aligned}$	$\begin{aligned} & 160 \\ & 160 \end{aligned}$		$\begin{aligned} & * \\ & * \\ & * \\ & * \end{aligned}$	* *		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$		
FREQUENCY RESPONSE Gain Bandwidth Product Slew Rate Settling Time: 0.1\% 0.01\% Overload Recovery Time Total Harmonic Distortion + Noise THD+N	$\begin{gathered} G=1,10 \mathrm{~V} \text { Step, } \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ \mathrm{G}=1,10 \mathrm{~V} \text { Step, } C_{\mathrm{L}}=100 \mathrm{pF} \\ \mathrm{~V}_{\mathrm{IN}} \cdot G=\mathrm{V}_{\mathrm{S}} \\ \mathrm{f}=1 \mathrm{kHz}, \mathrm{G}=1, \mathrm{~V}_{\mathrm{O}}=3.5 \mathrm{Vrms} \end{gathered}$		$\begin{gathered} 8 \\ 2.3 \\ 5 \\ 5.6 \\ 1.3 \\ 0.00005 \end{gathered}$			$\begin{aligned} & * \\ & * \\ & * \\ & * \\ & * \\ & * \\ & * \end{aligned}$		MHz V/ $\mu \mathrm{s}$ $\mu \mathrm{s}$ $\mu \mathrm{S}$ $\mu \mathrm{s}$ \%		
OUTPUT Voltage Output $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$ Short-Circuit Current Capacitive Load Drive	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=600 \Omega \\ & \mathrm{R}_{\mathrm{L}}=600 \Omega \end{aligned}$	$\begin{gathered} (\mathrm{V}-)+2 \\ (\mathrm{~V}-)+2 \\ (\mathrm{~V}-)+3.5 \\ (\mathrm{~V}-)+3.5 \end{gathered}$ See	± 45 Typical	$\begin{gathered} (\mathrm{V}+)-2 \\ (\mathrm{~V}+)-2 \\ (\mathrm{~V}+)-3.5 \\ (\mathrm{~V}+)-3.5 \end{gathered}$ urve	$\begin{aligned} & * \\ & * \\ & * \\ & * \\ & * \end{aligned}$	$\begin{aligned} & * \\ & * \end{aligned}$	$\begin{aligned} & * \\ & * \\ & * \\ & * \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{~V} \\ \mathrm{~V} \\ \mathrm{~mA} \end{gathered}$		
POWER SUPPLY Specified Voltage Range Operating Voltage Range Quiescent Current (per amplifier) $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=0 \\ & \mathrm{I}_{\mathrm{O}}=0 \end{aligned}$	$\begin{gathered} \pm 5 \\ \pm 2.5 \end{gathered}$	± 3.7	$\begin{aligned} & \pm 15 \\ & \pm 18 \\ & \pm 3.8 \\ & \pm 4.2 \end{aligned}$	$\begin{aligned} & * \\ & * \end{aligned}$	*	$\begin{aligned} & * \\ & * \\ & * \\ & * \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{~mA} \\ \mathrm{~mA} \end{gathered}$		
TEMPERATURE RANGE Specified Range Operating Range Storage Range Thermal Resistance SO-8 Surface Mount DIP-8 DIP-14 SO-14 Surface Mount		$\begin{aligned} & -40 \\ & -55 \\ & -65 \end{aligned}$	$\begin{gathered} 150 \\ 100 \\ 80 \\ 100 \end{gathered}$	$\begin{gathered} +85 \\ +125 \\ +150 \end{gathered}$	$\begin{aligned} & * \\ & * \\ & * \end{aligned}$	$\begin{aligned} & * \\ & * \\ & * \\ & * \end{aligned}$	$\begin{aligned} & * \\ & * \\ & * \end{aligned}$	$\begin{gathered} { }^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{C} \\ \\ { }^{\circ} \mathrm{C} / \mathrm{W} \end{gathered}$		

[^0]
SPECIFICATIONS: $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$

OPA228 Series

At $T_{A}=+25^{\circ} \mathrm{C}$, and $R_{L}=10 \mathrm{k} \Omega$, unless otherwise noted.
Boldface limits apply over the specified temperature range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

PARAMETER	CONDITION	$\begin{aligned} & \text { OPA228P, U } \\ & \text { OPA2228P, U } \end{aligned}$			OPA228PA, UA OPA2228PA, UA OPA4228PA, UA			UNITS		
		MIN	TYP	MAX	MIN	TYP	MAX			
OFFSET VOLTAGE Input Offset Voltage $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}$ vs Temperature vs Power Supply $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}$ vs Time Channel Separation (dual, quad)	$\begin{aligned} & V_{S}= \pm 2.5 \mathrm{~V} \text { to } \pm 18 \mathrm{~V} \\ & \mathrm{dc} \\ & \mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega \end{aligned}$		$\begin{gathered} \pm 5 \\ \\ \pm 0.1 \\ \pm 0.5 \\ \\ 0.2 \\ 0.2 \\ 110 \end{gathered}$	$\begin{gathered} \pm 75 \\ \pm 100 \\ \pm 0.6 \\ \pm 2 \\ \pm 2 \end{gathered}$		$\begin{gathered} \pm 10 \\ \pm 0.3 \\ * \\ * \\ * \\ * \end{gathered}$	$\begin{gathered} \pm 200 \\ \pm 200 \\ \pm 2 \\ * \\ * \end{gathered}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{V} / \mathrm{V}$ $\mu \mathrm{V} / \mathrm{V}$ $\mu \mathrm{V} / \mathrm{mo}$ $\mu \mathrm{V} / \mathrm{V}$ dB		
INPUT BIAS CURRENT Input Bias Current $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}$ Input Offset Current $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}$			$\begin{aligned} & \pm 2.5 \\ & \pm 2.5 \end{aligned}$	$\begin{aligned} & \pm 10 \\ & \pm 10 \\ & \pm 10 \\ & \pm 10 \end{aligned}$		* *	$\begin{aligned} & * \\ & * \\ & * \\ & * \end{aligned}$	$\begin{aligned} & \text { nA } \\ & \text { nA } \\ & \text { nA } \\ & \mathrm{nA} \end{aligned}$		
NOISE Input Voltage Noise, $\mathrm{f}=0.1 \mathrm{~Hz}$ to 10 Hz $\text { Input Voltage Noise Density, } \begin{aligned} f & =10 \mathrm{~Hz} \quad e_{n} \\ f & =100 \mathrm{~Hz} \\ f & =1 \mathrm{kHz} \end{aligned}$ Current Noise Density, $f=1 \mathrm{kHz}$			$\begin{gathered} 90 \\ 15 \\ 3.5 \\ 3 \\ 3 \\ 0.4 \end{gathered}$			$\begin{aligned} & * \\ & * \\ & * \\ & * \\ & * \\ & * \end{aligned}$		nVp-p n Vrms $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ $\mathrm{pA} / \sqrt{\mathrm{Hz}}$		
INPUT VOLTAGE RANGE Common-Mode Voltage Range $\quad \mathrm{V}_{\mathrm{CM}}$ Common-Mode Rejection CMRR $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CM}}=(\mathrm{V}-)+2 \mathrm{~V}$ to $(\mathrm{V}+)-2 \mathrm{~V}$	$\begin{gathered} (\mathrm{V}-)+2 \\ 120 \\ 120 \end{gathered}$	138	(V+)-2	$\begin{aligned} & * \\ & * \\ & * \end{aligned}$	*	*	$\begin{gathered} \mathrm{V} \\ \mathrm{~dB} \\ \mathrm{~dB} \end{gathered}$		
INPUT IMPEDANCE Differential Common-Mode	$\mathrm{V}_{\mathrm{CM}}=(\mathrm{V}-)+2 \mathrm{~V}$ to ($\mathrm{V}+$)-2V		$\begin{gathered} 10^{7}\| \| 12 \\ 10^{9}\| \| 3 \end{gathered}$			$\begin{aligned} & * \\ & * \\ & * \end{aligned}$		$\begin{aligned} & \Omega \\| \mathrm{pF} \\ & \Omega \\| \mathrm{pF} \end{aligned}$		
OPEN-LOOP GAIN Open-Loop Voltage Gain $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} V_{O}=(\mathrm{V}-)+2 \mathrm{~V} \text { to }(\mathrm{V}+)-2 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ \mathrm{~V}_{\mathrm{O}}=(\mathrm{V}-)+3.5 \mathrm{~V} \text { to }(\mathrm{V}+)-3.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=600 \Omega \end{gathered}$	$\begin{aligned} & 132 \\ & 132 \\ & 132 \\ & 132 \end{aligned}$	$\begin{aligned} & 160 \\ & 160 \end{aligned}$		$\begin{aligned} & * \\ & * \\ & * \\ & * \\ & \hline \end{aligned}$	* *		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \hline \end{aligned}$		
FREQUENCY RESPONSE Minimum Closed-Loop Gain Gain Bandwidth Product Slew Rate Settling Time: 0.1\% 0.01\% Overload Recovery Time Total Harmonic Distortion + Noise THD+N	$\begin{gathered} G=5,10 \mathrm{~V} \text { Step, } C_{L}=100 \mathrm{pF}, C_{F}=12 \mathrm{pF} \\ \mathrm{G}=5,10 \mathrm{~V} \text { Step, } C_{L}=100 \mathrm{pF}, \mathrm{C}_{\mathrm{F}}=12 \mathrm{pF} \\ V_{I N} \cdot G=V_{S} \\ \mathrm{f}=1 \mathrm{kHz}, \mathrm{G}=5, \mathrm{~V}_{\mathrm{O}}=3.5 \mathrm{Vrms} \end{gathered}$		5 33 11 1.5 2 0.6 0.00005			$\begin{aligned} & * \\ & * \\ & * \\ & * \\ & * \\ & * \\ & * \\ & * \end{aligned}$		$\begin{gathered} \mathrm{V} / \mathrm{V} \\ \mathrm{MHz} \\ \mathrm{~V} / \mu \mathrm{s} \\ \mu \mathrm{~s} \\ \mu \mathrm{~s} \\ \mu \mathrm{~s} \\ \% \end{gathered}$		
```OUTPUT Voltage Output \(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) \(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) Short-Circuit Current Capacitive Load Drive```	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=600 \Omega \\ & \mathrm{R}_{\mathrm{L}}=600 \Omega \end{aligned}$	$\begin{array}{r} (\mathrm{V}-)+2 \\ (\mathrm{~V}-)+2 \\ (\mathrm{~V}-)+3.5 \\ (\mathrm{~V}-)+3.5 \\ \mathrm{See} \end{array}$	$\pm 45$   Typical	$\begin{gathered} (\mathrm{V}+)-2 \\ (\mathrm{~V}+)-2 \\ (\mathrm{~V}+)-3.5 \\ (\mathrm{~V}+)-3.5 \end{gathered}$   urve	$\begin{aligned} & * \\ & * \\ & * \\ & * \end{aligned}$	$\begin{aligned} & * \\ & * \end{aligned}$	$\begin{aligned} & * \\ & * \\ & * \\ & * \end{aligned}$	$\begin{gathered} V \\ V \\ V \\ V \\ \mathrm{~mA} \end{gathered}$		
POWER SUPPLY   Specified Voltage Range Operating Voltage Range Quiescent Current (per amplifier) $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}$	$\begin{aligned} & I_{O}=0 \\ & I_{0}=0 \end{aligned}$	$\begin{gathered} \pm 5 \\ \pm 2.5 \end{gathered}$	$\pm 3.7$	$\begin{aligned} & \pm 15 \\ & \pm 18 \\ & \pm 3.8 \\ & \pm 4.2 \end{aligned}$	$\begin{aligned} & * \\ & * \end{aligned}$	*	$\begin{aligned} & * \\ & * \\ & * \\ & * \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{~mA} \\ \mathrm{~mA} \end{gathered}$		
TEMPERATURE RANGE   Specified Range   Operating Range   Storage Range   Thermal Resistance   SO-8 Surface Mount   DIP-8   DIP-14   SO-14 Surface Mount		$\begin{aligned} & -40 \\ & -55 \\ & -65 \end{aligned}$	$\begin{gathered} 150 \\ 100 \\ 80 \\ 100 \end{gathered}$	$\begin{aligned} & +85 \\ & +125 \\ & +150 \end{aligned}$	$\begin{aligned} & * \\ & * \\ & * \end{aligned}$	$\begin{aligned} & * \\ & * \\ & * \\ & * \end{aligned}$	*	$\begin{gathered} { }^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{C} \\ \\ { }^{\circ} \mathrm{C} / \mathrm{W} \end{gathered}$		

[^1]
## ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$



NOTE: (1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. (2) Short-circuit to ground, one amplifier per package.

## PACKAGE/ORDERING INFORMATION

For the most current package and ordering information, see the Package Option Addendum located at the end of this datasheet, or refer to our web site at www.ti.com.

## ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

## TYPICAL PERFORMANCE CURVES

At $T_{A}=+25^{\circ} \mathrm{C}, R_{L}=10 \mathrm{k} \Omega$, and $\mathrm{V}_{S}= \pm 15 \mathrm{~V}$, unless otherwise noted.






## TYPICAL PERFORMANCE CURVES (CONT)

At $T_{A}=+25^{\circ} \mathrm{C}, R_{L}=10 \mathrm{k} \Omega$, and $V_{S}= \pm 15 \mathrm{~V}$, unless otherwise noted.







## TYPICAL PERFORMANCE CURVES (CONT)

At $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$, and $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$, unless otherwise noted.







## TYPICAL PERFORMANCE CURVES (CONT)

At $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$, and $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$, unless otherwise noted.







## TYPICAL PERFORMANCE CURVES (CONT)

At $T_{A}=+25^{\circ} \mathrm{C}, R_{L}=10 \mathrm{k} \Omega$, and $V_{S}= \pm 15 \mathrm{~V}$, unless otherwise noted.


SMALL-SIGNAL STEP RESPONSE
$\mathrm{G}=+1, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$


400ns/div

## TYPICAL PERFORMANCE CURVES (CONT)

At $T_{A}=+25^{\circ} \mathrm{C}, R_{L}=10 \mathrm{k} \Omega$, and $V_{S}= \pm 15 \mathrm{~V}$, unless otherwise noted.



## APPLICATIONS INFORMATION

The OPA227 and OPA228 series are precision op amps with very low noise. The OPA227 series is unity-gain stable with a slew rate of $2.3 \mathrm{~V} / \mu \mathrm{s}$ and 8 MHz bandwidth. The OPA 228 series is optimized for higher-speed applications with gains of 5 or greater, featuring a slew rate of $10 \mathrm{~V} / \mu \mathrm{s}$ and 33 MHz bandwidth. Applications with noisy or high impedance power supplies may require decoupling capacitors close to the device pins. In most cases, $0.1 \mu \mathrm{~F}$ capacitors are adequate.

## OFFSET VOLTAGE AND DRIFT

The OPA227 and OPA228 series have very low offset voltage and drift. To achieve highest dc precision, circuit layout and mechanical conditions should be optimized. Connections of dissimilar metals can generate thermal potentials at the op amp inputs which can degrade the offset voltage and drift. These thermocouple effects can exceed the inherent drift of the amplifier and ultimately degrade its performance. The thermal potentials can be made to cancel by assuring that they are equal at both input terminals. In addition:

- Keep thermal mass of the connections made to the two input terminals similar.
- Locate heat sources as far as possible from the critical input circuitry.
- Shield op amp and input circuitry from air currents such as those created by cooling fans.


## OPERATING VOLTAGE

OPA227 and OPA228 series op amps operate from $\pm 2.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ supplies with excellent performance. Unlike most op amps which are specified at only one supply voltage, the OPA227 series is specified for real-world applications; a single set of specifications applies over the $\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ supply range. Specifications are assured for applications between $\pm 5 \mathrm{~V}$ and $\pm 15 \mathrm{~V}$ power supplies. Some applications do not require equal positive and negative output voltage swing. Power supply voltages do not need to be equal. The OPA227 and OPA228 series can operate with as little as 5 V between the supplies and with up to 36 V between the supplies. For example, the positive supply could be set to 25 V with the negative supply at -5 V or vice-versa. In addition, key parameters are assured over the specified temperature range, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Parameters which vary significantly with operating voltage or temperature are shown in the Typical Performance Curves.

## OFFSET VOLTAGE ADJUSTMENT

The OPA227 and OPA228 series are laser-trimmed for very low offset and drift so most applications will not require external adjustment. However, the OPA227 and OPA228 (single versions) provide offset voltage trim connections on pins 1 and 8 . Offset voltage can be adjusted by connecting a potentiometer as shown in Figure 1. This adjustment should be used only to null the offset of the op


FIGURE 1. OPA227 Offset Voltage Trim Circuit.
amp. This adjustment should not be used to compensate for offsets created elsewhere in the system since this can introduce additional temperature drift.

## INPUT PROTECTION

Back-to-back diodes (see Figure 2) are used for input protection on the OPA227 and OPA228. Exceeding the turn-on threshold of these diodes, as in a pulse condition, can cause current to flow through the input protection diodes due to the amplifier's finite slew rate. Without external current-limiting resistors, the input devices can be destroyed. Sources of high input current can cause subtle damage to the amplifier. Although the unit may still be functional, important parameters such as input offset voltage, drift, and noise may shift.


FIGURE 2. Pulsed Operation.
When using the OPA227 as a unity-gain buffer (follower), the input current should be limited to 20 mA . This can be accomplished by inserting a feedback resistor or a resistor in series with the source. Sufficient resistor size can be calculated:

$$
\mathrm{R}_{\mathrm{X}}=\mathrm{V}_{\mathrm{S}} / 20 \mathrm{~mA}-\mathrm{R}_{\mathrm{SOURCE}}
$$

where $R_{X}$ is either in series with the source or inserted in the feedback path. For example, for a 10 V pulse $\left(\mathrm{V}_{\mathrm{S}}=\right.$ 10 V ), total loop resistance must be $500 \Omega$. If the source impedance is large enough to sufficiently limit the current on its own, no additional resistors are needed. The size of any external resistors must be carefully chosen since they will increase noise. See the Noise Performance section of this data sheet for further information on noise calculation. Figure 2 shows an example implementing a currentlimiting feedback resistor.

## INPUT BIAS CURRENT CANCELLATION

The input bias current of the OPA227 and OPA228 series is internally compensated with an equal and opposite cancellation current. The resulting input bias current is the difference between with input bias current and the cancellation current. The residual input bias current can be positive or negative.
When the bias current is cancelled in this manner, the input bias current and input offset current are approximately equal. A resistor added to cancel the effect of the input bias current (as shown in Figure 3) may actually increase offset and noise and is therefore not recommended.


FIGURE 3. Input Bias Current Cancellation.

## NOISE PERFORMANCE

Figure 4 shows total circuit noise for varying source impedances with the op amp in a unity-gain configuration (no feedback resistor network, therefore no additional noise contributions). Two different op amps are shown with total circuit noise calculated. The OPA227 has very low voltage noise, making it ideal for low source impedances (less than $20 \mathrm{k} \Omega$ ). A similar precision op amp, the OPA277, has somewhat higher voltage noise but lower current noise. It provides excellent noise performance at moderate source impedance ( $10 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$ ). Above $100 \mathrm{k} \Omega$, a FET-input op amp such as the OPA132 (very low current noise) may provide improved performance. The equation is shown for the calculation of the total circuit noise. Note that $e_{n}=$ voltage noise, $i_{n}=$ current noise, $\mathrm{R}_{\mathrm{S}}=$ source impedance, $\mathrm{k}=$ Boltzmann's constant $=$ $1.38 \cdot 10^{-23} \mathrm{~J} / \mathrm{K}$ and T is temperature in K . For more details on calculating noise, see the insert titled "Basic Noise Calculations."


FIGURE 4. Noise Performance of the OPA227 in UnityGain Buffer Configuration.

## BASIC NOISE CALCULATIONS

Design of low noise op amp circuits requires careful consideration of a variety of possible noise contributors: noise from the signal source, noise generated in the op amp, and noise from the feedback network resistors. The total noise of the circuit is the root-sum-square combination of all noise components.
The resistive portion of the source impedance produces thermal noise proportional to the square root of the resistance. This function is shown plotted in Figure 4. Since the source impedance is usually fixed, select the op amp and the feedback resistors to minimize their contribution to the total noise.

Figure 4 shows total noise for varying source impedances with the op amp in a unity-gain configuration (no feedback resistor network and therefore no additional noise contributions). The operational amplifier itself contributes both a voltage noise component and a current
noise component. The voltage noise is commonly modeled as a time-varying component of the offset voltage. The current noise is modeled as the time-varying component of the input bias current and reacts with the source resistance to create a voltage component of noise. Consequently, the lowest noise op amp for a given application depends on the source impedance. For low source impedance, current noise is negligible and voltage noise generally dominates. For high source impedance, current noise may dominate.
Figure 5 shows both inverting and noninverting op amp circuit configurations with gain. In circuit configurations with gain, the feedback network resistors also contribute noise. The current noise of the op amp reacts with the feedback resistors to create additional noise components. The feedback resistor values can generally be chosen to make these noise sources negligible. The equations for total noise are shown for both configurations.

## Noise in Noninverting Gain Configuration



Noise at the output:

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{O}}^{2}=\left(1+\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}\right)^{2} \mathrm{e}_{\mathrm{n}}^{2}+\mathrm{e}_{1}^{2}+\mathrm{e}_{2}^{2}+\left(\mathrm{i}_{\mathrm{n}} \mathrm{R}_{2}\right)^{2}+\mathrm{e}_{\mathrm{S}}^{2}+\left(\mathrm{i}_{\mathrm{n}} \mathrm{R}_{\mathrm{S}}\right)^{2}\left(1+\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}\right)^{2} \\
& \text { Where } \mathrm{e}_{\mathrm{S}}=\sqrt{4 \mathrm{kTR}_{\mathrm{S}}} \cdot\left(1+\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}\right)=\text { thermal noise of } \mathrm{R}_{\mathrm{S}} \\
& \mathrm{e}_{1}=\sqrt{4 \mathrm{kTR}_{1}} \cdot\left(\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}\right)=\text { thermal noise of } \mathrm{R}_{1} \\
& \mathrm{e}_{2}=\sqrt{4 \mathrm{kTR}_{2}} \quad=\text { thermal noise of } \mathrm{R}_{2}
\end{aligned}
$$

## Noise in Inverting Gain Configuration



Noise at the output:

$$
E_{O}^{2}=\left(1+\frac{R_{2}}{R_{1}+R_{S}}\right)^{2} e_{n}^{2}+e_{1}^{2}+e_{2}^{2}+\left(i_{n} R_{2}\right)^{2}+e_{S}^{2}
$$

Where $\mathrm{e}_{\mathrm{S}}=\sqrt{4 \mathrm{kTR}_{\mathrm{S}}} \cdot\left(\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{\mathrm{S}}}\right)=$ thermal noise of $\mathrm{R}_{\mathrm{S}}$

$$
\begin{array}{ll}
\mathrm{e}_{1}=\sqrt{4 \mathrm{kTR}_{1}} \cdot\left(\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{\mathrm{S}}}\right) & =\text { thermal noise of } \mathrm{R}_{1} \\
\mathrm{e}_{2}=\sqrt{4 \mathrm{kTR}_{2}} \quad & =\text { thermal noise of } \mathrm{R}_{2}
\end{array}
$$

For the OPA227 and OPA228 series op amps at $1 \mathrm{kHz}, \mathrm{e}_{\mathrm{n}}=3 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ and $\mathrm{i}_{\mathrm{n}}=0.4 \mathrm{pA} / \sqrt{\mathrm{Hz}}$.

FIGURE 5. Noise Calculation in Gain Configurations.


FIGURE 6. 0.1 Hz to 10 Hz Bandpass Filter Used to Test Wideband Noise of the OPA227 and OPA228 Series.


FIGURE 7. Noise Test Circuit.

Figure 6 shows the 0.1 Hz 10 Hz bandpass filter used to test the noise of the OPA227 and OPA228. The filter circuit was designed using Texas Instruments' FilterPro software (available at www.ti.com). Figure 7 shows the configuration of the OPA227 and OPA228 for noise testing.

## USING THE OPA228 IN LOW GAINS

The OPA228 family is intended for applications with signal gains of 5 or greater, but it is possible to take advantage of their high speed in lower gains. Without external compensation, the OPA228 has sufficient phase margin to maintain stability in unity gain with purely resistive loads. However, the addition of load capacitance can reduce the phase margin and destabilize the op amp.
A variety of compensation techniques have been evaluated specifically for use with the OPA228. The recommended configuration consists of an additional capacitor ( $\mathrm{C}_{\mathrm{F}}$ ) in parallel with the feedback resistance, as shown in Figures 8 and 11. This feedback capacitor serves two purposes in compensating the circuit. The op amp's input capacitance and the feedback resistors interact to cause phase shift that can result in instability. $\mathrm{C}_{\mathrm{F}}$ compensates the input capacitance, minimizing peaking. Additionally, at high frequencies, the closed-loop gain of the amplifier is strongly influenced by the ratio of the input capacitance and the feedback capacitor. Thus, $\mathrm{C}_{\mathrm{F}}$ can be selected to yield good stability while maintaining high speed.

Without external compensation, the noise specification of the OPA228 is the same as that for the OPA227 in gains of 5 or greater. With the additional external compensation, the output noise of the of the OPA228 will be higher. The amount of noise increase is directly related to the increase in high frequency closed-loop gain established by the $\mathrm{C}_{\mathrm{IN}}$ / $\mathrm{C}_{\mathrm{F}}$ ratio.

Figures 8 and 11 show the recommended circuit for gains of +2 and -2 , respectively. The figures suggest approximate


FIGURE 8. Compensation of the OPA228 for $\mathrm{G}=+2$.


FIGURE 9. Large-Signal Step Response, $\mathrm{G}=+2, \mathrm{C}_{\text {LOAD }}=$ 100 pF , Input Signal $=5 \mathrm{Vp}-\mathrm{p}$.


FIGURE 10. Small-Signal Step Response, $G=+2, \mathrm{C}_{\text {LOAD }}=$ 100 pF , Input Signal $=50 \mathrm{mV}$ p-p.
values for $\mathrm{C}_{\mathrm{F}}$. Because compensation is highly dependent on circuit design, board layout, and load conditions, $\mathrm{C}_{\mathrm{F}}$ should be optimized experimentally for best results. Figures 9 and 10 show the large- and small-signal step responses for the $G=+2$ configuration with 100 pF load capacitance. Figures 12 and 13 show the large- and smallsignal step responses for the $G=-2$ configuration with 100 pF load capacitance.


FIGURE 11. Compensation for OPA228 for $\mathrm{G}=-2$.


FIGURE 12. Large-Signal Step Response, $G=-2, C_{\text {LOAD }}=$ 100 pF , Input Signal $=5 \mathrm{Vp}-\mathrm{p}$.


FIGURE 13. Small-Signal Step Response, $G=-2, C_{\text {LOAD }}=$ 100 pF , Input Signal $=50 \mathrm{mV}$ p-p.


FIGURE 14. Three-Pole, 20kHz Low Pass, 0.5dB Chebyshev Filter.


FIGURE 15. Long-Wavelength Infrared Detector Amplifier.


FIGURE 16. High Performance Synchronous Demodulator.


FIGURE 17. Headphone Amplifier.


FIGURE 18. Three-Band ActiveTone Control (bass, midrange and treble).


## PACKAGING INFORMATION

Orderable Device	Status ${ }^{(1)}$	Package Type	Package Drawing		Package Qty	$\text { Eco Plan }{ }^{(2)}$	Lead/Ball Finish	MSL Peak Temp ${ }^{(3)}$
OPA2227P	ACTIVE	PDIP	P	8	50	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$ )	CU NIPDAU	N/ A for Pkg Type
OPA2227PA	ACTIVE	PDIP	P	8	50	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text { ) } \end{gathered}$	CU NIPDAU	N/ A for Pkg Type
OPA2227PAG4	ACTIVE	PDIP	P	8	50	Green (RoHS \& no Sb/Br) no Sb/Br)	CU NIPDAU	N/ A for Pkg Type
OPA2227PG4	ACTIVE	PDIP	P	8	50	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$ )	CU NIPDAU	N/ A for Pkg Type
OPA2227U	ACTIVE	SOIC	D	8	75	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU NIPDAU	Level-3-260C-168 HR
OPA2227U/2K5	ACTIVE	SOIC	D	8	2500	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \\ \hline \end{gathered}$	CU NIPDAU	Level-3-260C-168 HR
OPA2227U/2K5G4	ACTIVE	SOIC	D	8	2500	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text { ) } \\ \hline \end{gathered}$	CU NIPDAU	Level-3-260C-168 HR
OPA2227UA	ACTIVE	SOIC	D	8	75	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text { ) } \\ \hline \end{gathered}$	CU NIPDAU	Level-3-260C-168 HR
OPA2227UA/2K5	ACTIVE	SOIC	D	8	2500	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \\ \hline \end{gathered}$	CU NIPDAU	Level-3-260C-168 HR
OPA2227UA/2K5E4	ACTIVE	SOIC	D	8	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$ )	CU NIPDAU	Level-3-260C-168 HR
OPA2227UAE4	ACTIVE	SOIC	D	8	75	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no Sb/Br) } \\ \hline \end{gathered}$	CU NIPDAU	Level-3-260C-168 HR
OPA2227UAG4	ACTIVE	SOIC	D	8	75	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text { ) } \end{gathered}$	CU NIPDAU	Level-3-260C-168 HR
OPA2227UE4	ACTIVE	SOIC	D	8	75	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text { ) } \\ \hline \end{gathered}$	CU NIPDAU	Level-3-260C-168 HR
OPA2227UG4	ACTIVE	SOIC	D	8	75	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text { ) } \\ \hline \end{gathered}$	CU NIPDAU	Level-3-260C-168 HR
OPA2228P	ACTIVE	PDIP	P	8	50	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$ )	CU NIPDAU	N/ A for Pkg Type
OPA2228PA	ACTIVE	PDIP	P	8	50	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \\ \hline \end{gathered}$	CU NIPDAU	N/ A for Pkg Type
OPA2228PAG4	ACTIVE	PDIP	P	8	50	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text { ) } \end{gathered}$	CU NIPDAU	N/ A for Pkg Type
OPA2228PG4	ACTIVE	PDIP	P	8	50	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text { ) } \\ \hline \end{gathered}$	CU NIPDAU	N/ A for Pkg Type
OPA2228U	ACTIVE	SOIC	D	8	75	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \\ \hline \end{gathered}$	CU NIPDAU	Level-3-260C-168 HR
OPA2228U/2K5	ACTIVE	SOIC	D	8	2500	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \\ \hline \end{gathered}$	CU NIPDAU	Level-3-260C-168 HR
OPA2228U/2K5E4	ACTIVE	SOIC	D	8	2500	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text { ) } \end{gathered}$	CU NIPDAU	Level-3-260C-168 HR
OPA2228UA	ACTIVE	SOIC	D	8	75	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$ )	CU NIPDAU	Level-3-260C-168 HR
OPA2228UA/2K5	ACTIVE	SOIC	D	8	2500	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text { ) } \end{gathered}$	CU NIPDAU	Level-3-260C-168 HR
OPA2228UA/2K5E4	ACTIVE	SOIC	D	8	2500	$\begin{aligned} & \text { Green (RoHS \& } \\ & \text { no } \mathrm{Sb} / \mathrm{Br}) \end{aligned}$	CU NIPDAU	Level-3-260C-168 HR
OPA2228UAE4	ACTIVE	SOIC	D	8	75	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU NIPDAU	Level-3-260C-168 HR

PACKAGE OPTION ADDENDUM
www.ti.com
16-Feb-2009

Orderable Device	Status ${ }^{(1)}$	Package Type	Package Drawing		Package Qty	$\text { Eco Plan }{ }^{(2)}$	Lead/Ball Finish	MSL Peak Temp ${ }^{(3)}$
OPA2228UE4	ACTIVE	SOIC	D	8	75	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$ )	CU NIPDAU	Level-3-260C-168 HR
OPA227P	ACTIVE	PDIP	P	8	50	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$ )	CU NIPDAU	N/ A for Pkg Type
OPA227PA	ACTIVE	PDIP	P	8	50	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$ )	CU NIPDAU	N/ A for Pkg Type
OPA227PAG4	ACTIVE	PDIP	P	8	50	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$ )	CU NIPDAU	N/ A for Pkg Type
OPA227PG4	ACTIVE	PDIP	P	8	50	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \\ \hline \end{gathered}$	CU NIPDAU	N/ A for Pkg Type
OPA227U	ACTIVE	SOIC	D	8	75	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$ )	CU NIPDAU	Level-3-260C-168 HR
OPA227U/2K5	ACTIVE	SOIC	D	8	2500	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \\ \hline \end{gathered}$	CU NIPDAU	Level-3-260C-168 HR
OPA227U/2K5E4	ACTIVE	SOIC	D	8	2500	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text { ) } \\ \hline \end{gathered}$	CU NIPDAU	Level-3-260C-168 HR
OPA227UA	ACTIVE	SOIC	D	8	75	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$ )	CU NIPDAU	Level-3-260C-168 HR
OPA227UA/2K5	ACTIVE	SOIC	D	8	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$ )	CU NIPDAU	Level-3-260C-168 HR
OPA227UA/2K5G4	ACTIVE	SOIC	D	8	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$ )	CU NIPDAU	Level-3-260C-168 HR
OPA227UAG4	ACTIVE	SOIC	D	8	75	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \\ \hline \end{gathered}$	CU NIPDAU	Level-3-260C-168 HR
OPA227UE4	ACTIVE	SOIC	D	8	75	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \\ \hline \end{gathered}$	CU NIPDAU	Level-3-260C-168 HR
OPA228P	ACTIVE	PDIP	P	8	50	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$ )	CU NIPDAU	N/ A for Pkg Type
OPA228PA	ACTIVE	PDIP	P	8	50	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$ )	CU NIPDAU	N/ A for Pkg Type
OPA228PAG4	ACTIVE	PDIP	P	8	50	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \\ \hline \end{gathered}$	CU NIPDAU	N/ A for Pkg Type
OPA228PG4	ACTIVE	PDIP	P	8	50	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \\ \hline \end{gathered}$	CU NIPDAU	N/ A for Pkg Type
OPA228U	ACTIVE	SOIC	D	8	75	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$ )	CU NIPDAU	Level-3-260C-168 HR
OPA228UA	ACTIVE	SOIC	D	8	75	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \\ \hline \end{gathered}$	CU NIPDAU	Level-3-260C-168 HR
OPA228UA/2K5	ACTIVE	SOIC	D	8	2500	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \end{gathered}$	CU NIPDAU	Level-3-260C-168 HR
OPA228UA/2K5E4	ACTIVE	SOIC	D	8	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$ )	CU NIPDAU	Level-3-260C-168 HR
OPA228UAG4	ACTIVE	SOIC	D	8	75	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no Sb/Br) } \\ \hline \end{gathered}$	CU NIPDAU	Level-3-260C-168 HR
OPA228UG4	ACTIVE	SOIC	D	8	75	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \\ \hline \end{gathered}$	CU NIPDAU	Level-3-260C-168 HR
OPA4227PA	ACTIVE	PDIP	N	14	25	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no Sb/Br) } \\ \hline \end{gathered}$	CU NIPDAU	N/ A for Pkg Type
OPA4227PAG4	ACTIVE	PDIP	N	14	25	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \end{gathered}$	CU NIPDAU	N/ A for Pkg Type
OPA4227UA	ACTIVE	SOIC	D	14	50	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$ )	CU NIPDAU	Level-3-260C-168 HR


Orderable Device	Status ${ }^{(1)}$	Package Type	Package Drawing		Package Qty	Eco Plan ${ }^{(2)}$	Lead/Ball Finish	MSL Peak Temp ${ }^{(3)}$
OPA4227UA/2K5	ACTIVE	SOIC	D	14	2500	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text { ) } \end{gathered}$	CU NIPDAU	Level-3-260C-168 HR
OPA4227UA/2K5G4	ACTIVE	SOIC	D	14	2500	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text { ) } \end{gathered}$	CU NIPDAU	Level-3-260C-168 HR
OPA4227UAG4	ACTIVE	SOIC	D	14	50	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text { ) } \end{gathered}$	CU NIPDAU	Level-3-260C-168 HR
OPA4228PA	ACTIVE	PDIP	N	14	25	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text { ) } \end{gathered}$	CU NIPDAU	N/ A for Pkg Type
OPA4228PAG4	ACTIVE	PDIP	N	14	25	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text { ) } \end{gathered}$	CU NIPDAU	N/ A for Pkg Type
OPA4228UA	ACTIVE	SOIC	D	14	50	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \end{gathered}$	CU NIPDAU	Level-3-260C-168 HR
OPA4228UA/2K5	ACTIVE	SOIC	D	14	2500	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text { ) } \end{gathered}$	CU NIPDAU	Level-3-260C-168 HR
OPA4228UA/2K5G4	ACTIVE	SOIC	D	14	2500	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text { ) } \\ \hline \end{gathered}$	CU NIPDAU	Level-3-260C-168 HR
OPA4228UAE4	ACTIVE	SOIC	D	14	50	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb -Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed $0.1 \%$ by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb -Free products are suitable for use in specified lead-free processes.
Pb -Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb -Free (RoHS compatible) as defined above.
Green (RoHS \& no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine ( Br ) and Antimony ( Sb ) based flame retardants ( Br or Sb do not exceed $0.1 \%$ by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

## TAPE AND REEL INFORMATION



QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

| Device | Package <br> Type | Package <br> Drawing | Pins | SPQ | Reel <br> Diameter <br> $(\mathbf{m m})$ | Reel <br> Width <br> W1 (mm) | A0 (mm) | B0 (mm) | K0 (mm) | P1 <br> $(\mathbf{m m})$ | W <br> $(\mathbf{m m})$ | Pin1 <br> Quadrant |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OPA2227U/2K5 | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 |
| OPA2227UA/2K5 | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 |
| OPA2228U/2K5 | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 |
| OPA2228UA/2K5 | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 |
| OPA227U/2K5 | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 |
| OPA227UA/2K5 | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 |
| OPA228UA/2K5 | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 |
| OPA4227UA/2K5 | SOIC | D | 14 | 2500 | 330.0 | 16.4 | 6.5 | 9.0 | 2.1 | 8.0 | 16.0 | Q1 |
| OPA4228UA/2K5 | SOIC | D | 14 | 2500 | 330.0 | 16.4 | 6.5 | 9.0 | 2.1 | 8.0 | 16.0 | Q1 |


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
OPA2227U/2K5	SOIC	D	8	2500	346.0	346.0	29.0
OPA2227UA/2K5	SOIC	D	8	2500	346.0	346.0	29.0
OPA2228U/2K5	SOIC	D	8	2500	346.0	346.0	29.0
OPA2228UA/2K5	SOIC	D	8	2500	346.0	346.0	29.0
OPA227U/2K5	SOIC	D	8	2500	346.0	346.0	29.0
OPA227UA/2K5	SOIC	D	8	2500	346.0	346.0	29.0
OPA228UA/2K5	SOIC	D	8	2500	346.0	346.0	29.0
OPA4227UA/2K5	SOIC	D	14	2500	346.0	346.0	33.0
OPA4228UA/2K5	SOIC	D	14	2500	346.0	346.0	33.0

$P(R-P D I P-T 8)$
PLASTIC DUAL-IN-LINE PACKAGE


NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-001 variation BA.

D (R-PDSO-G14)


NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.

C Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed $0.006(0,15)$ each side.
D Body width does not include interlead flash. Interlead flash shall not exceed $0.017(0,43)$ each side.
E. Reference JEDEC MS-012 variation AB.

㩆 TEXAS
INSTRUMENTS

D (R-PDSO-G14)

## PLASTIC SMALL OUTLINE



NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

INSTRUMENTS WWW.BD'm..coc.com/TI

D (R-PDSO-G8)


NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.

C Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed $0.006(0,15)$ each side.
D. Body width does not include interlead flash. Interlead flash shall not exceed $0.017(0,43)$ each side
E. Reference JEDEC MS-012 variation AA.

矛 TEXAS
INSTRUMENTS


NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

INSTRUMENTS

## IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products	
Audio	
Amplifiers	$\underline{\text { www.ti.com/audio }}$
Data Converters	$\underline{\text { amplifier.ti.com }}$
DLP® Products	$\underline{\text { dataconverter.ti.com }}$
DSP	$\underline{\text { www.dlp.com }}$
Clocks and Timers	$\underline{\text { www.ti.com/clocks }}$
Interface	$\underline{\text { interface.ti.com }}$
Logic.ti.com	
Power Mgmt	$\underline{\text { power.ti.com }}$
Microcontrollers	$\underline{\text { mww.ti-ridid.com }}$
RFID	$\underline{\text { www.ti.com/lprf }}$

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2011, Texas Instruments Incorporated


[^0]:    * Specifications same as OPA227P, U.

[^1]:    * Specifications same as OPA228P, U

