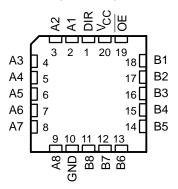
SCLS304B - JANUARY 1996 - REVISED DECEMBER 2002


- Wide Operating Voltage Range of 2 V to 6 V
- High-Current 3-State Outputs Can Drive Up To 15 LSTTL Loads
- Low Power Consumption, 80-μA Max I_{CC}

SN54HC645 . . . J OR W PACKAGE SN74HC645 . . . DW, N, OR NS PACKAGE (TOP VIEW)

DIR [1	\bigcup_{20}] v _{cc}
A1 [2	19	OE
A2 [3	18	B1
A3 [4	17	B2
A4 [5	16] B3
A5 [6	15] B4
A6 [7	14] B5
A7 [8	13] B6
A8 [9	12] B7
GND [10	11] B8

- Typical t_{pd} = 12 ns
- ±6-mA Output Drive at 5 V
- Low Input Current of 1 μA Max
- True Logic

SN54HC645 . . . FK PACKAGE (TOP VIEW)

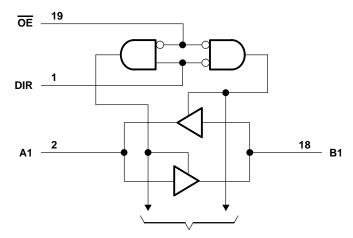
description/ordering information

These octal bus transceivers are designed for asynchronous two-way communication between data buses. These devices transmit data from the A bus to the B bus or from the B bus to the A bus, depending upon the level at the direction-control (DIR) input. The output-enable (\overline{OE}) input can be used to disable the device so the buses are effectively isolated.

ORDERING INFORMATION

TA	PACKAGE [†]		ORDERABLE PART NUMBER	TOP-SIDE MARKING
-40°C to 85°C	PDIP – N	Tube	SN74HC645N	SN74HC645N
	0010 PW	Tube	SN74HC645DW	110045
	SOIC – DW	Tape and reel	SN74HC645DWR	HC645
	SOP - NS	Tape and reel	SN74HC645NSR	HC645
	CDIP – J	Tube	SNJ54HC645J	SNJ54HC645J
–55°C to 125°C	CFP – W Tube		SNJ54HC645W	SNJ54HC645W
	LCCC – FK	Tube	SNJ54HC645FK	SNJ54HC645FK

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.


FUNCTION TABLE

INP	UTS	ODED ATION
OE	DIR	OPERATION
L	L	B data to A bus
L	Н	A data to B bus
Н	X	Isolation

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

logic diagram (positive logic)

To Seven Other Transceivers

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}		0.5 V to 7 V
Input clamp current, I _{IK} (V _I < 0 or V _I > V _{CC}) (see	e Note 1)	±20 mA
Output clamp current, IOK (VO < 0 or VO > VCC) (see Note 1)	±20 mA
Continuous output current, $I_O(V_O = 0 \text{ to } V_{CC})$		±35 mA
Continuous current through V _{CC} or GND		±70 mA
Package thermal impedance, θ_{JA} (see Note 2):	DW package	58°C/W
•••	N package	69°C/W
	NS package	60°C/W
Storage temperature range, T _{stq}		–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

recommended operating conditions (see Note 3)

		SN	SN54HC645			174HC64	5	UNIT	
		MIN	NOM	MAX	MIN	NOM	MAX	UNII	
Supply voltage		2	5	6	2	5	6	V	
	V _{CC} = 2 V	1.5			1.5				
High-level input voltage	V _{CC} = 4.5 V	3.15			3.15			V	
	V _{CC} = 6 V	4.2			4.2				
Low-level input voltage	V _{CC} = 2 V			0.5			0.5		
	V _{CC} = 4.5 V			1.35			1.35	V	
	VCC = 6 V			1.8			1.8		
Input voltage		0		VCC	0		VCC	V	
Output voltage		0		VCC	0		VCC	V	
	V _{CC} = 2 V			1000			1000		
Input transition rise/fall time	V _{CC} = 4.5 V			500			500	ns	
	VCC = 6 V			400			400		
Operating free-air temperature	•	-55		125	-40		85	°C	
	High-level input voltage Low-level input voltage Input voltage Output voltage Input transition rise/fall time	High-level input voltage	Supply voltage			MIN NOM MAX MIN	MIN NOM MAX MIN NOM NOM Supply voltage 2 5 6 2 5 5 6 2 5 5 6 2 5 5 6 2 5 5 6 2 5 5 6 2 5 5 6 2 5 5 6 2 5 5 6 2 5 5 6 2 5 5 6 2 5 5 6 2 5 5 6 2 5 5 6 2 5 5 6 2 5 5 6 2 5 5 6 6 6 6 6 6 6 6	MIN NOM MAX MIN NOM MAX MIN NOM MAX MIN NOM MAX MIN NOM MAX MIN NOM MAX MIN NOM MAX MIN NOM MAX MIN NOM	

^{2.} The package thermal impedance is calculated in accordance with JESD 51-7.

SCLS304B - JANUARY 1996 - REVISED DECEMBER 2002

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

D4.D	AMETER	TEST CONDITIONS			Т	A = 25°C	;	SN54H	IC645	SN74HC645		
PAR	AMETER	TEST CO	vcc	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT	
				2 V	1.9	1.998		1.9		1.9		
			I _{OH} = -20 μA	4.5 V	4.4	4.499		4.4		4.4		
۷он		VI = VIH or VIL		6 V	5.9	5.999		5.9		5.9		V
			$I_{OH} = -6 \text{ mA}$	4.5 V	3.98	4.3		3.7		3.84		
			$I_{OH} = -7.8 \text{ mA}$	6 V	5.48	5.8		5.2		5.34		
		V _I = V _{IH} or V _{IL}	l _{OL} = 20 μA	2 V		0.002	0.1		0.1		0.1	
				4.5 V		0.001	0.1		0.1		0.1	
VOL				6 V		0.001	0.1		0.1		0.1	V
			I _{OL} = 6 mA	4.5 V		0.17	0.26		0.4		0.33	
			$I_{OL} = 7.8 \text{ mA}$	6 V		0.15	0.26		0.4		0.33	
Ц	DIR or OE	$V_I = V_{CC}$ or 0		6 V		±0.1	±100		±1000		±1000	nA
loz	A or B	VO = VCC or 0		6 V		±0.01	±0.5		±10		±5	μΑ
ICC		$V_I = V_{CC}$ or 0,	IO = 0	6 V			8		160		80	μΑ
Ci	DIR or OE			2 V to 6 V		3	10		10		10	pF

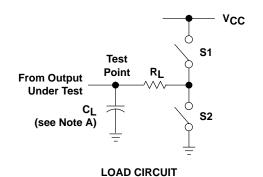
switching characteristics over recommended operating free-air temperature range, C_L = 50 pF (unless otherwise noted) (see Figure 1)

DADAMETED	FROM	то	V	T,	գ = 25°C	;	SN54H	IC645	SN74H	IC645	LINIT
PARAMETER	(INPUT)	(OUTPUT)	vcc	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
			2 V		40	105		160		130	
t _{pd}	A or B	B or A	4.5 V		15	21		32		26	ns
·			6 V		12	18		27		22	
			2 V		125	230		340		290	
t _{en}	ŌĒ	A or B	4.5 V		23	46		68		58	ns
			6 V		20	39		58		49	
			2 V		74	200		300		250	
^t dis	ŌE	A or B	4.5 V		25	40		60		50	ns
			6 V		21	34		51		43	
			2 V		20	60		90		75	
tţ		A or B	4.5 V		8	12		18		15	ns
			6 V		6	10		15		13	

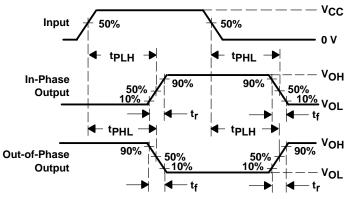
SN54HC645, SN74HC645 OCTAL BUS TRANSCEIVERS WITH 3-STATE OUTPUTS

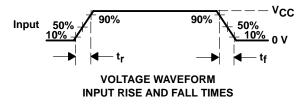
SCLS304B - JANUARY 1996 - REVISED DECEMBER 2002

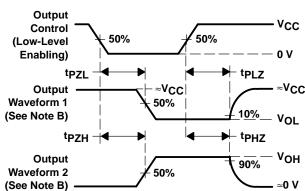
switching characteristics over recommended operating free-air temperature range, C_L = 150 pF (unless otherwise noted) (see Figure 1)


DADAMETED	FROM	то	,	T,	չ = 25°C	;	SN54F	IC645	SN74HC645		LINUT
PARAMETER	(INPUT)	(OUTPUT)	VCC	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
			2 V		54	135		200		170	
t _{pd}	A or B	B or A	4.5 V		18	27		40		34	ns
			6 V		15	23		34		29	
			2 V		150	270		405		335	
t _{en}	ŌĒ	A or B	4.5 V		31	54		81		67	67 ns
			6 V		25	46		69		56	
			2 V		45	210		315		265	
t _t		A or B	4.5 V		17	42		63		53	ns
			6 V		13	36		53		45	

operating characteristics, $T_A = 25^{\circ}C$


	PARAMETER	TEST CONDITIONS	TYP	UNIT
C _{pd}	Power dissipation capacitance per transceiver	No load	40	pF


PARAMETER MEASUREMENT INFORMATION



PARAI	METER	RL	CL	S1	S2
	tPZH	1 k Ω	50 pF	Open	Closed
ten	tPZL	1 K22	or 150 pF	Closed	Open
4	tPHZ	1 k Ω	50 pF	Open	Closed
^t dis	^t PLZ	1 K22	50 pr	Closed	Open
t _{pd} or t _t			50 pF or 150 pF	Open	Open

VOLTAGE WAVEFORMS
PROPAGATION DELAY AND OUTPUT TRANSITION TIMES

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES FOR 3-STATE OUTPUTS

- NOTES: A. C_L includes probe and test-fixture capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z_O = 50 Ω , t_f = 6 ns.
 - D. The outputs are measured one at a time with one input transition per measurement.
 - E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
 - F. tpzL and tpzH are the same as ten.
 - G. tpLH and tpHL are the same as tpd.

Figure 1. Load Circuit and Voltage Waveforms

28-Aug-2010

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
SN54HC645J	ACTIVE	CDIP	J	20	1	TBD	A42	N / A for Pkg Type	Contact TI Distributor or Sales Office
SN74HC645DW	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Contact TI Distributor or Sales Office
SN74HC645DWE4	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Contact TI Distributor or Sales Office
SN74HC645DWG4	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Contact TI Distributor or Sales Office
SN74HC645DWR	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Purchase Samples
SN74HC645DWRE4	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Purchase Samples
SN74HC645DWRG4	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Purchase Samples
SN74HC645N	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	Contact TI Distributor or Sales Office
SN74HC645NE4	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	Contact TI Distributor or Sales Office
SNJ54HC645FK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	Contact TI Distributor or Sales Office
SNJ54HC645J	ACTIVE	CDIP	J	20	1	TBD	A42	N / A for Pkg Type	Contact TI Distributor or Sales Office

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

PACKAGE OPTION ADDENDUM

w.ti.com 28-Aug-2010

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

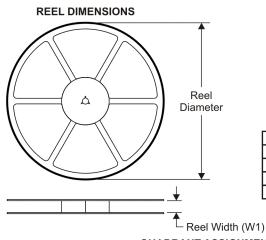
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

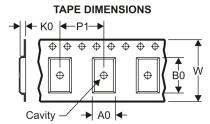
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN54HC645, SN74HC645:

Catalog: SN74HC645

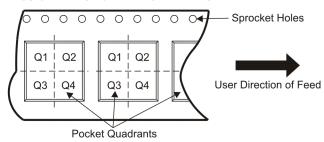
Military: SN54HC645


NOTE: Qualified Version Definitions:


Catalog - TI's standard catalog product

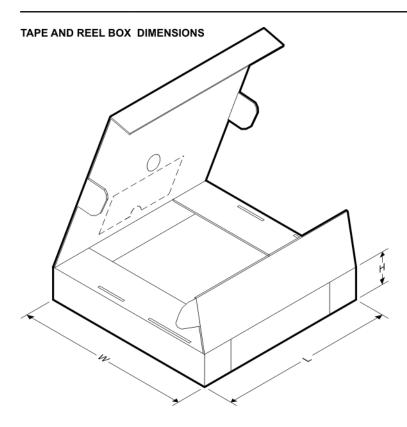
• Military - QML certified for Military and Defense Applications

www.ti.com 23-Jul-2010


TAPE AND REEL INFORMATION

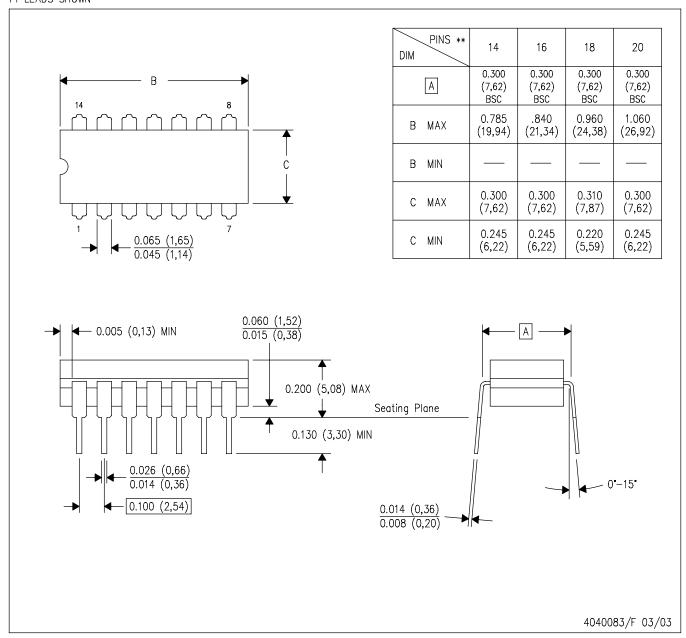
A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74HC645DWR	SOIC	DW	20	2000	330.0	24.4	10.8	13.0	2.7	12.0	24.0	Q1

PACKAGE MATERIALS INFORMATION


www.ti.com 23-Jul-2010

*All dimensions are nominal

ĺ	Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
I	SN74HC645DWR	SOIC	DW	20	2000	346.0	346.0	41.0

14 LEADS SHOWN

NOTES:

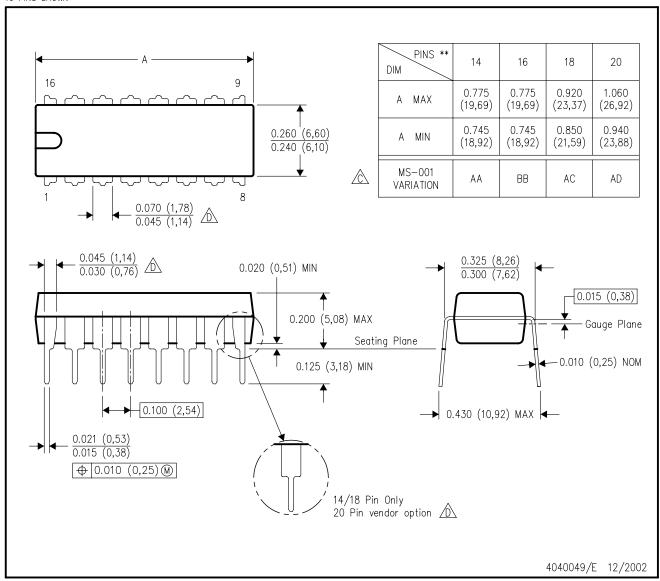
- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

www.BDTIC.com/TI

FK (S-CQCC-N**)

28 TERMINAL SHOWN

LEADLESS CERAMIC CHIP CARRIER


- NOTES: A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. This package can be hermetically sealed with a metal lid.
 - D. The terminals are gold plated.
 - E. Falls within JEDEC MS-004

N (R-PDIP-T**)

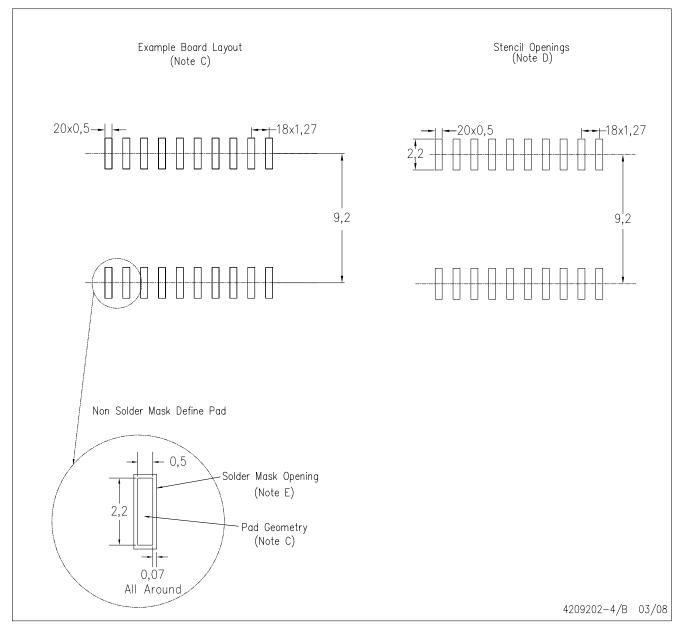
PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

DW (R-PDSO-G20)


PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-013 variation AC.

DW (R-PDSO-G20)

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications Amplifiers amplifier.ti.com Audio www.ti.com/audio **Data Converters** dataconverter.ti.com Automotive www.ti.com/automotive **DLP® Products** www.dlp.com Communications and www.ti.com/communications Telecom DSP Computers and www.ti.com/computers dsp.ti.com Peripherals Clocks and Timers www.ti.com/clocks Consumer Electronics www.ti.com/consumer-apps Interface interface.ti.com **Energy** www.ti.com/energy Industrial www.ti.com/industrial Logic logic.ti.com Power Mgmt power.ti.com Medical www.ti.com/medical Microcontrollers microcontroller.ti.com www.ti.com/security Security **RFID** www.ti-rfid.com Space, Avionics & www.ti.com/space-avionics-defense Defense RF/IF and ZigBee® Solutions www.ti.com/lprf Video and Imaging www.ti.com/video www.ti.com/wireless-apps Wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2010, Texas Instruments Incorporated

