

www.ti.com.cn

ZHCS490A - NOVEMBER 2011-REVISED NOVEMBER 2011

含SMAART线接口的低功耗、 数字温度传感器

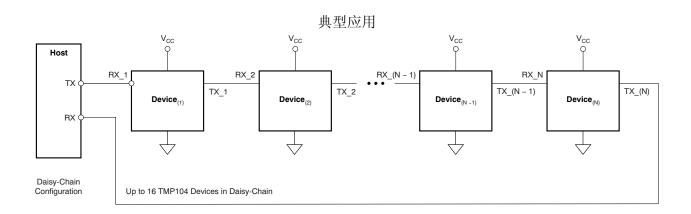
查询样品: TMP104

特性

- 多重设备访问(MDA):
 - 全局读/写操作
- SMAART 线接口
- 分辨率: 8位
- 准确度: 典型值为 ±0.5℃ (—10℃ 至 +100℃)
- 低静态电流:
 - 在 I_Q 为 0.25 Hz的运行模式下为 3 μA
 - 1 µA 关断电流
- 电源电压范围: 1.4 V 至 3.6 V
- 数字输出
- 封装方式: 0.8-mm (±5%) × 1-mm (±5%) 4-焊球 WCSP (DSBGA)

应用

- 手机
- 笔记本电脑


说明

TMP104 是一款采用 4 焊球晶圆级芯片规模封装 (WCSP) 的数字输出温度传感器。 TMP104 对温度的 读取辨别能力为 1℃。

TMP104 特有一个支持菊花链配置的 SMAART 线接 口。此外,该接口还支持多器件存取 (MDA) 命令,这 将允许主机与总线上的多个器件同时进行通信,从而不 必向总线上的每个 TMP104 分别发送命令。

最多可以把 16 个 TMP104 并联连接起来,并且主机 可以很轻易地对它们进行读取操作。 对于那些必须监 视多个温度测量区域而又空间受限、对功耗敏感的应用 而言, TMP104 是特别理想的选择。

TMP104 的额定工作温度范围为-40° 至 +125°。

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners.

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

PACKAGE/ORDERING INFORMATION(1)

PRODUCT	PACKAGE-LEAD	PACKAGE DESIGNATOR	PACKAGE MARKING	ORDERING NUMBER
TMD404	DSBGA-4	YFF	T4	TMP104YFFR
TMP104		YFF	14	TMP104YFFT

⁽¹⁾ For the most current package and ordering information, see the Package Option Addendum at the end of this document, or visit the device product folder at www.ti.com.

ABSOLUTE MAXIMUM RATINGS(1)

		TMP104	UNIT	
Supply voltage		3.6	V	
Input voltage		-0.3 to (V+) + 0.3 V		
Operating temperature		-55 to +150	°C	
Storage tempera	ature	-60 to +150	°C	
Junction tempera	ature	+150	°C	
	Human body model (HBM)	2000	V	
ESD rating	Charged device model (CDM)	1000	V	
	Machine model (MM)	200	V	

⁽¹⁾ Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not supported.

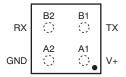
THERMAL INFORMATION

		TMP104	
	THERMAL METRIC ⁽¹⁾	YFF	UNITS
		4 PINS	
θ_{JA}	Junction-to-ambient thermal resistance	188.5	
θ_{JCtop}	Junction-to-case (top) thermal resistance	2.1	
θ_{JB}	Junction-to-board thermal resistance	35.1	°C/W
ΨЈТ	Junction-to-top characterization parameter	10.6	C/VV
ΨЈВ	Junction-to-board characterization parameter	35.1	
θ_{JCbot}	Junction-to-case (bottom) thermal resistance	N/A	

(1) 有关传统和新的热度量的更多信息,请参阅 IC 封装热度量 应用报告 SPRA953。

www.ti.com.cn

ELECTRICAL CHARACTERISTICS


At $T_A = +25$ °C and V+ = +1.4 V to +3.6 V, unless otherwise noted.

			-			
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
ГЕМРЕ	RATURE INPUT				<u>'</u>	
	Range		-40		+125	°C
		-10°C to +100°C, V+ = 1.8 V		±0.5	±2	°C
	Accuracy (temperature error)	-40°C to +125°C, V+ = 1.8 V		±1	±3	°C
		vs supply		±0.2	±0.5	°C/V
	Resolution			1.0		°C
DIGITA	L INPUT/OUTPUT				<u>'</u>	
√ _{IH}	la aut la sia lavala		0.7 × (V+)		V+	V
/ _{IL}	Input logic levels		-0.5		0.3 × (V+)	V
IN	Input current	0 < V _{IN} < (V+) + 0.3 V			1	μA
,		V+ > 2 V, I _{OL} = 1 mA	0		0.4	V
OL.	Outrat la ria lavala	V+ < 2 V, I _{OL} = 1 mA	0		0.2 × (V+)	V
,	Output logic levels	V+ > 2 V, I _{OH} = 1 mA	(V+) - 0.4		V+	V
ОН		V+ < 2 V, I _{OH} = 1 mA	0.8 × (V+)		V+	V
	Resolution			8		Bit
	Conversion time			26	35	ms
		CR1 = 0, CR0 = 0 (default)		0.25		Conv/s
	Conversion modes	CR1 = 0, CR0 = 1		1		Conv/s
	Conversion modes	CR1 = 1, CR0 = 0		4		Conv/s
		CR1 = 1, CR0 = 1		8		Conv/s
	Timeout time	Interface		28		ms
	SMAART wire interface	Serial baud rate	4.8		114	kbps
POWER	SUPPLY					
	Operating supply range		+1.4		+3.6	V
Q	Quiescent current	Serial bus inactive, CR1 = 0, CR0 = 0 (default), V+ = 1.8 V		1.5	3	μA
~		Serial bus active, CR1 = 0, CR0 = 0, V+ = 1.8 V		20		μA
SD	Shutdown current	Serial bus inactive, V+ = 1.8 V		0.5	1	μA
ГЕМРЕ	RATURE					
	Specified range		-40		+125	°C
	Operating range		-55		+150	°C

PIN CONFIGURATION

PIN DESCRIPTIONS

PIN		
NO.	NAME	DESCRIPTION
A1	V+	Supply voltage
A2	GND	Ground
B1	TX	Serial data output pin (push-pull output)
B2	RX	Serial data input pin

TYPICAL CHARACTERISTICS

At $T_A = +25$ °C and V+ = 1.8 V, unless otherwise noted.

QUIESCENT CURRENT vs TEMPERATURE (0.25 Conversions per Second)

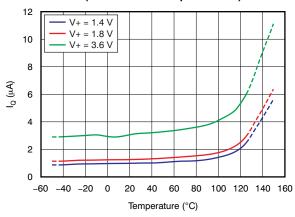


Figure 1.

SHUTDOWN CURRENT vs TEMPERATURE

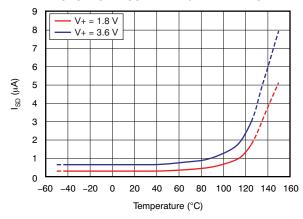


Figure 2.

CONVERSION TIME vs TEMPERATURE

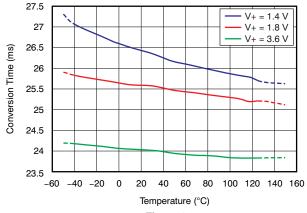


Figure 3.

TEMPERATURE ERROR vs TEMPERATURE

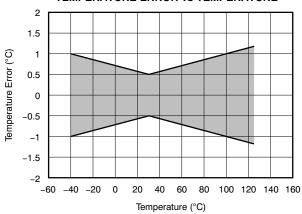


Figure 4.

APPLICATION INFORMATION

GENERAL DESCRIPTION

The TMP104 is a digital output temperature sensor in a wafer chip-scale package (WCSP) that is optimal for thermal management and thermal profiling. The TMP104 includes a SMAART wire interface that is capable of communicating in a daisy-chain with up to 16 devices on a single bus. The interface requires two pins from the host; the first device in the daisy-chain receives data from the host and the last device in the daisy-chain returns data to the host. In addition, the TMP104 has the capability of executing multiple device access (MDA) commands that allow multiple TMP104s to respond to a single global bus command. MDA commands reduce communication time and power in a bus that contains multiple TMP104 devices. The TMP104 is specified over a temperature range of –40°C to +125°C.

The TMP104 also has the capability of configuring the bus in a transparent mode, where the input from the host is sent directly to the next device in the chain without delay. Additionally, the TMP104 can disconnect the chain and create a serial communication controlled by each TMP104 on the bus, thereby allowing each device to have configurable addressing and interrupt capabilities. The input pin, RX, is a high-impedance node. The output pin, TX, has an internal push-pull output stage that can drive the host to GND or V+.

After an initialization sequence, each device on the bus is programmed with its own interface address that allows it to respond to its own address and also respond to general commands that permit the user to read or write to all of the devices on the bus without having to send its individual address and command to each individual device.

The temperature sensor in the TMP104 is the chip itself. Thermal paths run through the package bumps as well as the package. The lower thermal resistance of metal causes the bumps to provide the primary thermal path. To maintain accuracy in applications that require air or surface temperature measurement, care should be taken to isolate the package from ambient air temperature. A thermally-conductive adhesive can help to achieve accurate surface temperature measurement.

COMMUNICATION PROTOCOL

Each communication of the SMAART wire protocol consists of 8-bit words, transferred least significant bit (LSB) first. Each 8-bit word begins with a *Start* bit that is logic low, and ends with a *Stop* bit that is logic high. By using a Start bit and Stop bit for each 8-bit word, the TMP104 can calibrate each word and maintain synchronous communication throughout the process. The host commences the communication by sending a Start bit followed by the calibration byte (55h), allowing the TMP104 to sync to the baud rate of the host, followed by the Stop bit. Then, another Start bit is sent, followed by the command register byte and a Stop bit. Finally, a third Start bit is sent followed by the data byte, where master sends data if the instruction is a write command, or the TMP104 breaks the chain and sends data if the instruction is a read command. The process finishes with a Stop bit. The sequence is shown in Table 1 and Figure 5.

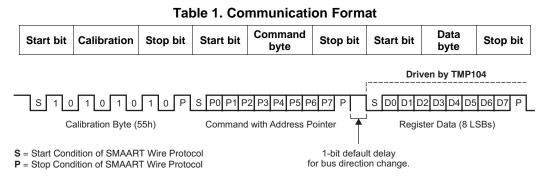


Figure 5. Generic Communication BitStream

The TMP104 has two dedicated pins for communication: TX and RX. Usually, these two pins are connected internally and the signal on the RX propagates to the TX; that is, the TMP104 works in a transparent mode. The TMP104 breaks this buffer configuration only when it must send data on the bus or during address assignment and alert procedures.

The TMP104 supports unique address assignment and alert interrupt procedures. There are general-call read and write commands that allow simultaneous reads or writes to all devices in the daisy-chain. The interface has built-in time outs (typically 28 ms) that return the interface to a known state if communication is disrupted.

COMMAND REGISTER

Figure 6 shows the internal register structure of the TMP104. Communications between the registers are transferred through the interface in LSB-first order. The 8-bit Command Register, as shown in Table 2, is used to determine the type of instruction being addressed. These eight bits could either interpret a global instruction or an individual instruction, which is determined by the value of P7. When P7 = 0, the command byte interprets an individual instruction; when P7 = 1, the command byte interprets a global instruction.

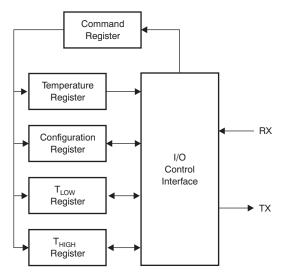


Figure 6. Internal Register Structure

Table 2. Command Register Byte

P7	P6	P5	P4	P3	P2	P1	P0
GLB	IN3/ID3	IN2/ID2	IN1/ID1	IN0/ID0	P1	P0	R/W

GLOBAL INITIALIZATION AND ADDRESS ASSIGNMENT SEQUENCE

At device power-up, every TMP104 in the daisy-chain is connected in transparent mode, as shown in Figure 7. The host must send the initialization command (P7-P0 = 10001100) in order for the bus to program its internal address depending on the number of devices on the bus.

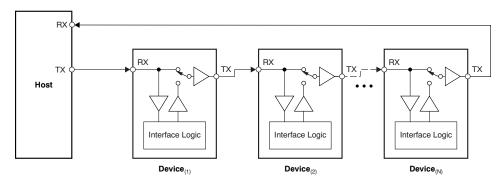


Figure 7. TMP104 Daisy-Chain: Bus Status at Start of Global Initialization

Each TMP104 in the chain interprets the initialization command byte and disconnects the chain, as shown in Figure 8. The host must then send the address assignment command, consisting of P7-P4 = 1001 and P3-P0 = 0000, where P3-P0 represents the address of the first device in the chain; this word is stored internally as its device ID. The first device increments the unit in the device address and then reconnects the bus, as shown in Figure 9. This address is then sent to the next device in the chain. Once all devices on the chain have received the respective addresses, the host receives the last programmed address on the chain + 1. The host can use this information to determine the total number of devices in the chain and the respective address of each device.

After the initialization sequence, every device can be addressed individually or through global commands. This global initialization sequence is a requirement and must be performed before any other communication.

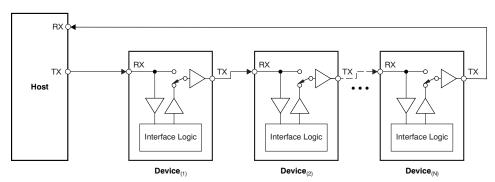


Figure 8. TMP104 Daisy-Chain: Bus Status at Start of Address Assignment

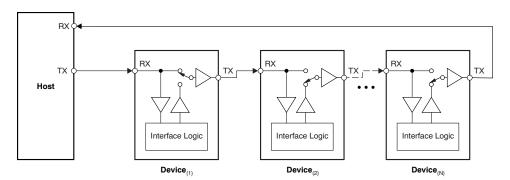


Figure 9. TMP104 Daisy-Chain: Bus Status After First Device Address Assignment

GLOBAL READ AND WRITE

The host can initiate a global read or write command to all TMP104s in the daisy-chain by sending the read/write command, consisting of P7-P3 = 11110. P2-P1 indicate the data register pointer, as shown in Table 3, and P0 indicates read/write control. P0 = 0 indicates a global write command. The host must transfer one more byte of data for the register (indicated by bits P2-P1), and every TMP104 in the daisy-chain updates the appropriate register. P0 = 1 indicates a global read command. The TMP104 with the device ID of '0000' then breaks the bus connection, transmits the data from the register indicated by bits P2-P1, and then reconnects the bus. The TMP104 with the device ID of '0001' then repeats the same sequence, followed by the rest of the TMP104 devices in the daisy-chain.

Table 3. Pointer Addresses

P0	P0	REGISTER				
0	0	Temperature register (read-only)				
0	1	Configuration register (read/write)				
1	0	T _{LOW} register (read/write)				
1	1	T _{HIGH} register (read/write)				

GLOBAL CLEAR INTERRUPT

The host can initiate a global clear interrupt command (P7-P0 = 10101001) to all TMP104s in the daisy-chain. Upon receiving this command, the TMP104 disables future interrupts (D7 in the Configuration Register is set to '0'). If a TMP104 has previously broken the bus connection and sent an interrupt (logic low on the bus), it now stops holding the bus low. The device sends the baud rate calibration command and clear interrupt command to the next TMP104 in the chain, and then reconnects the bus. In the case of multiple devices having active interrupts, the clear interrupt command propagates through the daisy-chain, disables all interrupts, and reconnects the bus across all devices.

GLOBAL SOFTWARE RESET

The host can initiate a global software reset command (P7-P0 = 10110100) to all TMP104s in the daisy-chain. Upon receiving this command, the TMP104 resets its internal registers except for the device ID, which is not reset, and reconnects the bus. If the bus is broken before the initiation of this command, all TMP104s before the broken bus point receive the command. If the host intends to initiate a global software reset across all TMP104s in the chain, this command must be transmitted multiple times until it echoes back to the host.

INDIVIDUAL READ AND WRITE

The host can initiate an individual read/write command to a particular TMP104 in the daisy-chain by sending the read/write command. The read/write command consists of these parameters:

- P6-P3 = the device ID
- P2-P1 = the data register pointer; see Table 3
- P0 = indicates read/write control

P0 = 0 indicates an individual write command; the host must transfer one more byte of data for the register indicated by bits P2-P1. The TMP104 in the daisy-chain that corresponds to the device ID noted by bits P6-P3 then updates the appropriate register. P0 = 1 indicates an individual read command; as shown in Figure 10, the TMP104 in the daisy-chain that corresponds to the device ID pointed by bits P6-P3 then breaks the bus, transmits the data from the register pointed by bits P2-P1, and reconnects the bus.

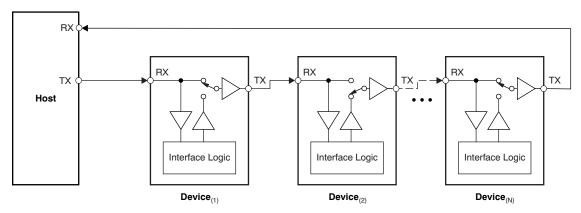


Figure 10. TMP104 Daisy-Chain: Bus Status During Individual Read Operation of Second Device

TEMPERATURE REGISTER

The Temperature Register of the TMP104 is configured as an 8-bit, read-only register that stores the output of the most recent conversion. A single byte must be read to obtain data, and is described in Table 4. The data format for temperature is summarized in Table 5. One LSB equals 1°C.

Table 4. Temperature Register

D7	D6	D5	D4	D3	D2	D1	D0
T7	T6	T5	T4	Т3	T2	T1	T0

Negative numbers are represented in binary twos complement format. Following power-up or reset, the Temperature Register reads 0°C until the first conversion is complete.

Table 5. 8-Bit Temperature Data Format⁽¹⁾

	DIGITAL OUTPUT			
TEMPERATURE (°C)	BINARY	HEX		
128	0111 1111	7F		
127	0111 1111	7F		
100	0110 0100	64		
80	0101 0000	50		
75	0100 1011	4B		
50	0011 0010	32		
25	0001 1001	19		
0	0000 0000	00		
-1	1111 1111	FF		
-25	1110 0111	E7		
- 55	1100 1001	C9		

⁽¹⁾ The resolution for the analog-to-digital converter (ADC) is 1°C/count, where *count* is equal to the digital output of the ADC.

For positive temperatures (for example, +50°C):

Twos complement is not performed on positive numbers. Therefore, simply convert the number to binary code, left-justified format. Denote a positive number with most significant bit (MSB) = 0.

Example: $(+50^{\circ}C)/(1^{\circ}C/count) = 50 = 32h = 0011\ 0010$

For negative temperatures (for example, -25°C):

Generate the twos complement of a negative number by complementing the absolute value binary number and adding 1. Denote a negative number with MSB = 1.

Example: $(|-25^{\circ}C|)/(1^{\circ}C/count) = 25 = 19h = 0001 1001$ Twos complement format: 1110 0110 + 1 = 1110 0111

CONFIGURATION REGISTER

The Configuration Register is an 8-bit read/write register used to store bits that control the operational modes of the temperature sensor. Read/write operations are performed LSB first. The format and power-up/reset value of the Configuration Register is shown in Table 6.

Table 6. Configuration and Power-Up/Reset Format

D7	D6	D5	D4	D3	D2	D1	D0
INT_EN	CR1	CR0	FH	FL	LC	M1	MO
0	0	0	0	0	0	1	0

Temperature Watchdog Function (FH, FL)

The TMP104 contains a watchdog function that monitors device temperature and compares the result to the values stored in the temperature limit registers (T_{HIGH} and T_{LOW}) in order to determine if the device temperature is within these set limits. If the temperature of the TMP104 becomes greater than the value in the T_{HIGH} register, then the flag-high bit (FH) in the Configuration Register is set to '1'. If the temperature falls below value in the T_{LOW} register, then the flag-low bit (FL) is set to '1'. If both flag bits remain '0', then the temperature is within the temperature *window* set by the temperature limit registers, as shown in Figure 11.

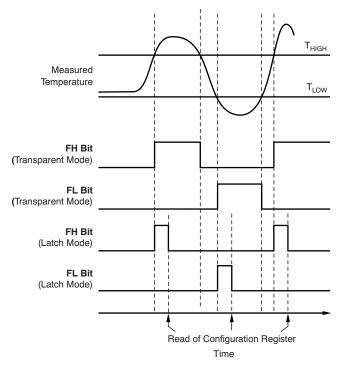
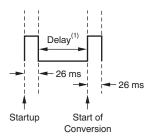


Figure 11. Temperature Flag Functional Diagram

The latch bit (LC) in the Configuration Register is used to latch the value of the flag bits (FH and FL) until the master issues a read command to the Configuration Register. The flag bits are set to '0' if a read command is received by the TMP104, or if LC = 0 and the temperature is within the temperature limits. The power-on default values for these bits are FH = 0, FL = 0, and LC = 0.


Conversion Rate (CR1, CR0)

The conversion rate bits (CR1 and CR0), located in the Configuration Register, configure the TMP104 for conversion rates of 8 Hz, 4 Hz, 1 Hz, or 0.25 Hz (default). The TMP104 has a typical conversion time of 26 ms. To achieve different conversion rates, the TMP104 performs a single conversion and then powers down and waits for the appropriate delay set by CR1 and CR0. Table 7 shows the settings for CR1 and CR0.

Table 7. Conversion Rate Settings

CR1	CR0	CONVERSION RATE
0	0 0 0.25 Hz (de	
0	1	1 Hz
1	0	4 Hz
1	1	8 Hz

After power-up or general-call reset, the TMP104 immediately starts a conversion, as shown in Figure 12. The first result is available after 26 ms (typical). The active quiescent current during conversion is 40 μ A (typical at +25°C, V+ = 1.8 V). The quiescent current during delay is 1.0 μ A (typical at +25°C, V+ = 1.8 V).

(1) Delay is set by CR1 and CR0.

Figure 12. Conversion Start

Conversion Modes

Shutdown Mode (M1 = 0, M0 = 0)

Shutdown mode saves maximum power by shutting down all device circuitry other than the serial interface, reducing current consumption to typically less than $0.5~\mu A$. Shutdown mode is enabled when bits M1 and M0 (in the Configuration Register) read '00'. The device shuts down when the current conversion is completed.

One-Shot Mode (M1 = 0, M0 = 1)

The TMP104 features a One-Shot Temperature Measurement mode. When the device is in Shutdown mode, writing '01' to bits M1 and M0 starts a single temperature conversion. During the conversion, bits M1 and M0 read '01'. The device returns to the shutdown state at the completion of the single conversion. After the conversion, bits M1 and M0 read '00'. This feature is useful for reducing power consumption in the TMP104 when continuous temperature monitoring is not required.

As a result of the short conversion time, the TMP104 can achieve a higher conversion rate. A single conversion typically takes 26 ms and an individual read can take place in less than 300 μ s. When using One-Shot mode, 30 or more conversions per second are possible.

Continuous Conversion Mode (M1 = 1)

When the TMP104 is in Continuous Conversion mode (M1 = 1), continuous conversions are performed at a rate determined by the conversion rate bits, CR1 and CR0 (in the Configuration Register). The TMP104 performs a single conversion, and then powers down and waits for the appropriate delay set by CR1 and CR0. See Table 7 for CR1 and CR0 settings.

Interrupt Functionality (INT_EN)

The TMP104 interrupts the host by disconnecting the bus and issuing an interrupt request by holding the bus low if all of these conditions are met, as shown in Figure 13:

- INT_EN in the Configuration Register is set to '1';
- The temperature result is higher than the value in the T_{HIGH} register or lower than the value in the T_{LOW} register (as indicated by a '1' in either FL or FH);
- · The bus is logic high and idle for more than 28 ms.

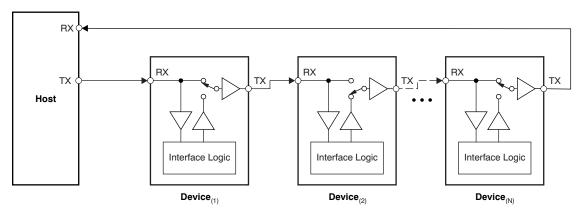


Figure 13. TMP104 Daisy-Chain:
Bus Status During an Interrupt Request (Logic Low) from Second Device

The interrupt on the bus is latched regardless of the status of LC. Writing a '1' to INT_EN automatically sets the LC bit. The TMP104 holds the bus low until one of the following events happen:

- Global Interrupt Clear command received;
- Global Software Reset command received;
- · A power-on reset event occurs.

Each of these events clears INT_EN; the TMP104 does not issue future interrupts until the host writes '1' to bit D7 in the Configuration Register to re-enable future interrupts.

In a system with enabled interrupts, it is possible for a TMP104 on the bus to issue an interrupt at the same time that the host starts a communication sequence. To avoid this scenario, it is recommended that the host should check the status on the receiving side of the bus after transmitting the calibration byte. If it is '1', then the host can continue with the communication. If it is '0', one of the TMP104 devices on the bus is issuing an alert and the host must transmit a Global Interrupt Clear command.

TEMPERATURE LIMIT REGISTERS

The T_{HIGH} and T_{LOW} registers are used to store the temperature limit thresholds for the TMP104 watchdog function. At the end of each temperature measurement, the TMP104 compares the temperature results to each of these limits. If the temperature result is greater than the T_{HIGH} limit, then the FH bit in the Configuration Register is set to '1'. If the temperature result is less than the T_{LOW} limit, then the FL bit in the Configuration Register is set to '1'; see Figure 11.

Table 8 and Table 9 describe the format for the T_{HIGH} and T_{LOW} registers. Power-up reset values for T_{HIGH} and T_{LOW} are: $T_{HIGH} = +60^{\circ}\text{C}$ and $T_{LOW} = -10^{\circ}\text{C}$. The format of the data for T_{HIGH} and T_{LOW} is the same as for the Temperature Register.

Table 8. T_{HIGH} Register

D7	D6	D5	D4	D3	D2	D1	D0
H7	H6	H5	H4	Н3	H2	H1	H0

Table 9. T_{LOW} Register

D7	D6	D5	D4	D3	D2	D1	D0
L7	L6	L5	L4	L3	L2	L1	L0

TIMEOUT FUNCTION

A timeout mechanism is implemented on the TMP104 to allow for re-synchronization of the SMAART wire interface if synchronization between the host and the TMP104 is lost for 28 ms (typical). If the timeout period expires between the calibration byte and the command byte, or between the command byte and any data byte, or between any data bytes, the TMP104 resets the SMAART wire interface circuitry so that it expects the baud rate calibration command to restart. Every time a byte is transmitted on the SMAART wire interface, this timeout period restarts.

NOISE

The TMP104 is a very low-power device and generates very low noise on the supply bus. Applying a bypass capacitor to the V+ pin of the TMP104 can further reduce any noise the TMP104 might propagate to other components. C_F in Figure 14 should be greater than 0.1 μ F.

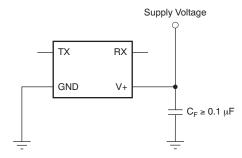


Figure 14. Noise Reduction

SMAART WIRE INTERFACE TIMING SPECIFICATIONS

Figure 15 illustrates the key timing and jitter considerations for the SMAART wire interface. Table 10 contains the timing specifications for ensured, reliable operation. During a transaction, the baud rate must remain within ±1% of its initialization byte value; however, the baud rate can change from transaction to transaction. There is an allowed delay between each byte transfer of less than 28 ms, which is the bus inactivity timeout check for the TMP104 SMAART wire interface.

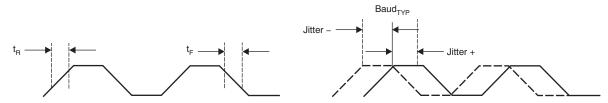


Figure 15. SMAART Wire Timing Diagram

Table 10. Timing Diagram Definitions

	PARAMETER	MIN	MAX	UNIT
Baud		4.8 k	114 k	Bits/s
t _R	Clock/data rise time		0.5	%Baud
t _F	Clock/data fall time		0.5	%Baud
Jitter			±1	%Baud

www.ti.com.cn

REVISION HISTORY

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

CI	hanges from Original (November 2011) to Revision A	Page
•	Changed 单线 <i>UART-</i> 类接口 至 <i>SMAART</i> 线接口贯穿文档	1
•	Changed description of protocol in Communication Protocol section	6
•	Updated Figure 5	6

PACKAGE OPTION ADDENDUM

www.ti.com

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
TMP104YFFR	ACTIVE	DSBGA	YFF	4	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	
TMP104YFFT	ACTIVE	DSBGA	YFF	4	250	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

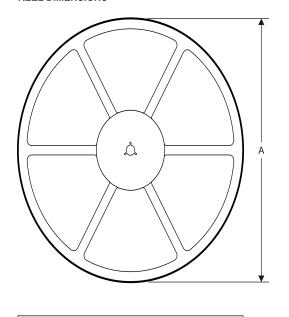
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

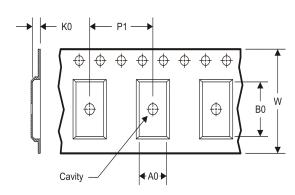
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.



PACKAGE MATERIALS INFORMATION

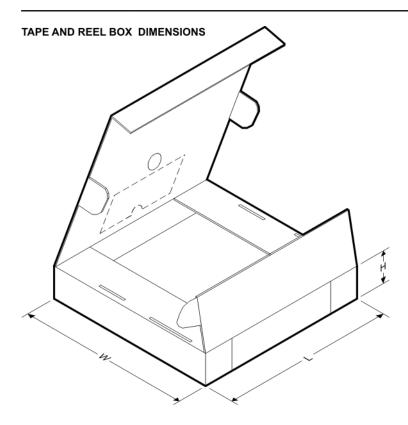

www.ti.com 7-Jan-2012

TAPE AND REEL INFORMATION

REEL DIMENSIONS

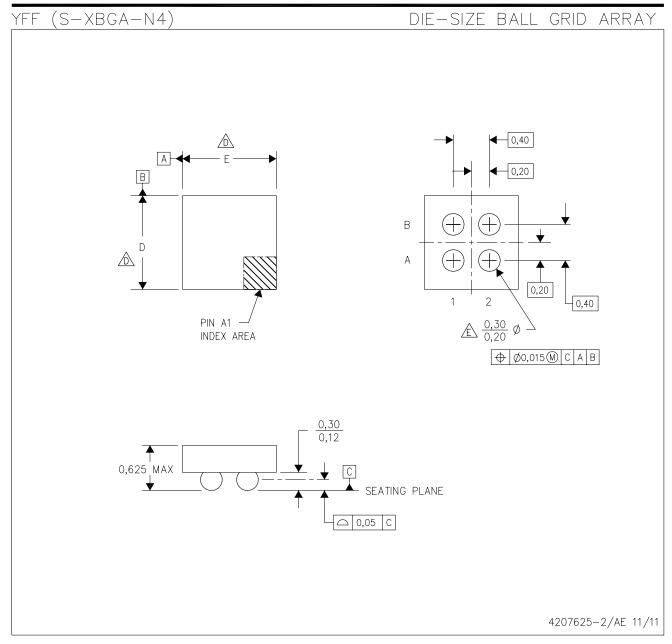
TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


TAPE AND REEL INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TMP104YFFR	DSBGA	YFF	4	3000	180.0	8.4	0.86	1.06	0.69	4.0	8.0	Q1
TMP104YFFT	DSBGA	YFF	4	250	180.0	8.4	0.86	1.06	0.69	4.0	8.0	Q1

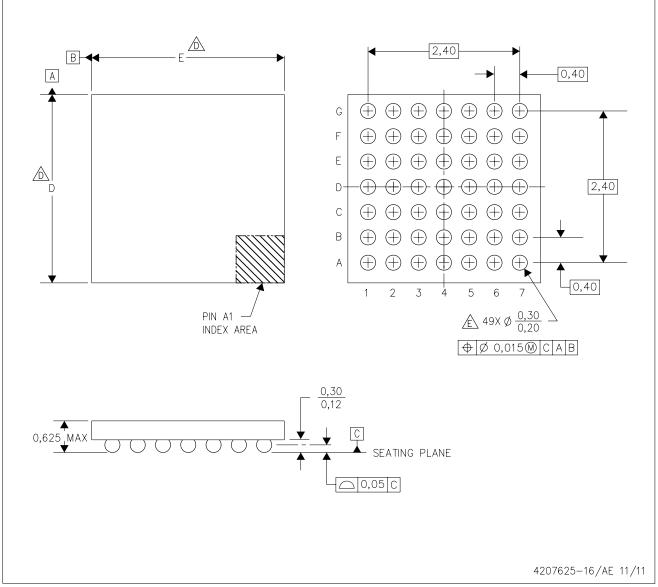


www.ti.com 7-Jan-2012

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TMP104YFFR	DSBGA	YFF	4	3000	210.0	185.0	35.0
TMP104YFFT	DSBGA	YFF	4	250	210.0	185.0	35.0

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.


- B. This drawing is subject to change without notice.
- C. NanoFree™ package configuration.
- The package size (Dimension D and E) of a particular device is specified in the device Product Data Sheet version of this drawing, in case it cannot be found in the product data sheet please contact a local TI representative.
- E. Reference Product Data Sheet for array population. 2 x 2 matrix pattern is shown for illustration only.
- F. This package contains Pb-free balls.

NanoFree is a trademark of Texas Instruments

YFF (R-XBGA-N49)

DIE-SIZE BALL GRID ARRAY

- NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
 - B. This drawing is subject to change without notice.
 - C. NanoFree™ package configuration.
 - The package size (Dimension D and E) of a particular device is specified in the device Product Data Sheet version of this drawing, in case it cannot be found in the product data sheet please contact a local TI representative.
 - E. Reference Product Data Sheet for array population. 7 x 7 matrix pattern is shown for illustration only.
 - F. This package contains Pb-free balls.

NanoFree is a trademark of Texas Instruments

重要声明

德州仪器(TI) 及其下属子公司有权在不事先通知的情况下,随时对所提供的产品和服务进行更正、修改、增强、改进或其它更改,并有权随时中止提供任何产品和服务。客户在下订单前应获取最新的相关信息,并验证这些信息是否完整且是最新的。所有产品的销售都遵循在订单确认时所提供的TI 销售条款与条件。

TI 保证其所销售的硬件产品的性能符合 TI 标准保修的适用规范。仅在 TI 保证的范围内,且 TI 认为有必要时才会使用测试或其它质量控制技术。除非政府做出了硬性规定,否则没有必要对每种产品的所有参数进行测试。

TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用TI 组件的产品和应用自行负责。为尽量减小与客户产品和应用相关的风险,客户应提供充分的设计与操作安全措施。

TI 不对任何TI 专利权、版权、屏蔽作品权或其它与使用了TI 产品或服务的组合设备、机器、流程相关的TI 知识产权中授予的直接或隐含权限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从TI 获得使用这些产品或服务的许可、授权、或认可。使用此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是TI 的专利权或其它知识产权方面的许可。

对于TI 的产品手册或数据表,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况下才允许进行复制。在复制信息的过程中对内容的篡改属于非法的、欺诈性商业行为。TI 对此类篡改过的文件不承担任何责任。

在转售TI 产品或服务时,如果存在对产品或服务参数的虚假陈述,则会失去相关TI 产品或服务的明示或暗示授权,且这是非法的、欺诈性商业行为。TI 对此类虚假陈述不承担任何责任。

TI产品未获得用于关键的安全应用中的授权,例如生命支持应用(在该类应用中一旦TI产品故障将预计造成重大的人员伤亡),除非各方官员已经达成了专门管控此类使用的协议。购买者的购买行为即表示,他们具备有关其应用安全以及规章衍生所需的所有专业技术和知识,并且认可和同意,尽管任何应用相关信息或支持仍可能由TI提供,但他们将独力负责满足在关键安全应用中使用其产品及TI产品所需的所有法律、法规和安全相关要求。此外,购买者必须全额赔偿因在此类关键安全应用中使用TI产品而对TI及其代表造成的损失。

TI 产品并非设计或专门用于军事/航空应用,以及环境方面的产品,除非TI 特别注明该产品属于"军用"或"增强型塑料"产品。只 有TI 指定的军用产品才满足军用规格。购买者认可并同意,对TI 未指定军用的产品进行军事方面的应用,风险由购买者单独承担,并且独力负责在此类相关使用中满足所有法律和法规要求。

TI产品并非设计或专门用于汽车应用以及环境方面的产品,除非TI特别注明该产品符合ISO/TS 16949要求。购买者认可并同意,如果他们在汽车应用中使用任何未被指定的产品,TI对未能满足应用所需要求不承担任何责任。

可访问以下URL 地址以获取有关其它TI 产品和应用解决方案的信息:

	产品		应用
数字音频	www.ti.com.cn/audio	通信与电信	www.ti.com.cn/telecom
放大器和线性器件	www.ti.com.cn/amplifiers	计算机及周边	www.ti.com.cn/computer
数据转换器	www.ti.com.cn/dataconverters	消费电子	www.ti.com/consumer-apps
DLP® 产品	www.dlp.com	能源	www.ti.com/energy
DSP - 数字信号处理器	www.ti.com.cn/dsp	工业应用	www.ti.com.cn/industrial
时钟和计时器	www.ti.com.cn/clockandtimers	医疗电子	www.ti.com.cn/medical
接口	www.ti.com.cn/interface	安防应用	www.ti.com.cn/security
逻辑	www.ti.com.cn/logic	汽车电子	www.ti.com.cn/automotive
电源管理	www.ti.com.cn/power	视频和影像	www.ti.com.cn/video
微控制器 (MCU)	www.ti.com.cn/microcontrollers		
RFID 系统	www.ti.com.cn/rfidsys		
OMAP 机动性处理器	www.ti.com/omap		
无线连通性	www.ti.com.cn/wirelessconnectivity		
	德州仪器在线技术支持社区	www.deyisupport.com	

邮寄地址: 上海市浦东新区世纪大道 1568 号,中建大厦 32 楼 邮政编码: 200122 Copyright © 2012 德州仪器 半导体技术(上海)有限公司