## Applications

- Repeaters
- BTS Transceivers
- BTS High Power Amplifiers
- CDMA / WCDMA / LTE
- ISM Equipment
- General Purpose Wireless


## Product Features

- 50-1500 MHz
- $\quad+30 \mathrm{dBm}$ P1dB at 940 MHz
- +47 dBm Output IP3 at 940 MHz
- 19.5 dB Gain at 940 MHz
- +5 V Single Supply, 220 mA Current
- Internal RF overdrive protection
- Internal DC overvoltage protection
- On chip ESD protection
- SOT-89 Package


## General Description

The TQP7M9105 is a high linearity, high gain 1W driver amplifier in industry standard, RoHS compliant, SOT-89 surface mount package. This InGaP/GaAs HBT delivers high performance across 0.05 to 1.5 GHz while achieving +47 dBm OIP3 and +30 dBm P1dB at 940 MHz while only consuming 220 mA quiescent current. All devices are $100 \%$ RF and DC tested.

The TQP7M9105 incorporates on-chip features that differentiate it from other products in the market. The amplifier has a dynamic active bias circuit that enable stable operation over bias and temperature variations and can provide a high linearity at back-off operation

The TQP7M9105 is targeted for use as a driver amplifier in wireless infrastructure where high linearity, medium power, and high efficiency are required. The device an excellent candidate for transceiver line cards and high power amplifiers in current and next generation multi-carrier 3G / 4G base stations.


3-pin SOT-89 Package

## Functional Block Diagram



## Pin Configuration

| Pin \# | Symbol |
| :--- | :--- |
| 1 | RF Input |
| 3 | RF Output / Vcc |
| 2,4 | Ground |

## Ordering Information

| Part No. | Description |
| :--- | :--- |
| TQP7M9105 | 1 W High Linearity Amplifier |
| TQP7M9105-PCB900 | $860-960 \mathrm{MHz}$ tuned EVB |
| Standard T/R size $=1000$ |  |
| pieces on a 7" reel. |  |

## Specifications

## Absolute Maximum Ratings

| Parameter | Rating |
| :--- | :---: |
| Storage Temperature | -65 to $150^{\circ} \mathrm{C}$ |
| Device Voltage, $\mathrm{V}_{\mathrm{cc}}$ | +8 V |
| RF Input Power <br> $\mathrm{CW}, 50 \Omega, \mathrm{~T}=25^{\circ} \mathrm{C}$ | +30 dBm |

Operation of this device outside the parameter ranges given above may cause permanent damage.

Recommended Operating Conditions

| Parameter | Min |  | Typ |  |
| :--- | :---: | :---: | :---: | :---: |
| Max |  | Units |  |  |
| Operating Temp. Range | -40 |  | +85 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{V}_{\mathrm{cc}}$ |  | +5 | +5.25 | V |
| Tj (for $>10^{6}$ hours MTTF) |  |  | +170 | ${ }^{\circ} \mathrm{C}$ |

Electrical specifications are measured at specified test conditions. Specifications are not guaranteed over all recommended operating conditions.

## Electrical Specifications

Test conditions unless otherwise noted: $+25^{\circ} \mathrm{C},+5 \mathrm{~V}$ Vcc, $50 \Omega$ system, tuned application circuit

| Parameter | Conditions | Min | Typ |  | Max |  | Units |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Operational Frequency Range |  | 50 |  | 1500 | MHz |  |  |
| Test Frequency |  |  | 940 |  | MHz |  |  |
| Gain |  | 17.5 | 19.4 | 20.5 | dB |  |  |
| Input Return Loss |  |  | 14 |  | dB |  |  |
| Output Return Loss |  | +28.7 | +30 |  | dB |  |  |
| Output P1dB |  |  |  |  |  |  |  |
| Output IP3 | Pout $=+15 \mathrm{dBm} /$ tone, $\Delta \mathrm{ff}=1 \mathrm{MHz}$ | +43.5 | +47 |  | dBm |  |  |
| WCDMA Channel Power ${ }^{(1)}$ | At -50 dBc ACLR |  | +20.5 |  | dBm |  |  |
| Noise Figure |  |  | 6.3 |  | dB |  |  |
| Vcc |  | 195 | 220 | 245 | mA |  |  |
| Quiescent Current, Icq |  |  | 27.3 |  | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |  |  |
| Thermal Resistance (junction to base) |  |  |  |  |  |  |  |

Notes:

1. ACLR Test set-up: 3GPP WCDMA, TM1+64 DPCH, +5 MHz offset, $\mathrm{PAR}=9.7 \mathrm{~dB}$ at $0.01 \%$ Prob.

## Device Characterization Data




Note: The gain for the unmatched device in 50 ohm system is shown as the trace in black color, [gain (S(21)]. For a tuned circuit at a particular frequency, it is expected that actual gain will be higher, up to the maximum stable gain. The maximum stable gain is shown as the blue trace [Gain (MAX)]. The impedance plots are shown from $0.01-6 \mathrm{GHz}$.

## S-Parameter Data

$\mathrm{V}_{\mathrm{cc}}=+5 \mathrm{~V}, \mathrm{I}_{\mathrm{cq}}=220 \mathrm{~mA}, \mathrm{~T}=+25^{\circ} \mathrm{C}$, unmatched 50 ohm system, calibrated to device leads

| Freq $(\mathbf{G H z})$ | $\mathbf{S 1 1}(\mathbf{d B})$ | $\mathbf{S 1 1}(\mathbf{a n g})$ | $\mathbf{S} 21(\mathbf{d B})$ | $\mathbf{S} 21(\mathbf{a n g})$ | $\mathbf{S 1 2}(\mathbf{d B})$ | $\mathbf{S 1 2}(\mathbf{a n g})$ | $\mathbf{S 2 2}(\mathbf{d B})$ | $\mathbf{S 2 2}(\mathbf{a n g})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.05 | -1.06 | -178.68 | 17.88 | 154.59 | -36.95 | 1.89 | -3.39 | -171.92 |
| 0.1 | -1.08 | -179.98 | 16.04 | 154.96 | -37.20 | 3.77 | -3.00 | -176.29 |
| 0.2 | -1.01 | 179.18 | 15.20 | 150.91 | -37.52 | 7.85 | -2.91 | -179.66 |
| 0.4 | -0.75 | 176.01 | 14.04 | 134.55 | -36.48 | 11.27 | -2.73 | 176.91 |
| 0.6 | -0.57 | 171.34 | 12.73 | 120.33 | -35.65 | 11.92 | -2.52 | 173.48 |
| 0.8 | -0.51 | 166.55 | 11.29 | 108.35 | -35.14 | 9.35 | -2.51 | 169.15 |
| 1.0 | -0.51 | 163.55 | 10.11 | 98.59 | -34.89 | 11.74 | -2.50 | 165.78 |
| 1.2 | -0.54 | 161.26 | 8.87 | 90.63 | -34.56 | 11.00 | -2.52 | 163.07 |
| 1.4 | -0.57 | 157.96 | 7.85 | 82.50 | -34.07 | 10.99 | -2.61 | 160.70 |
| 1.6 | -0.62 | 154.88 | 7.10 | 75.78 | -33.47 | 10.29 | -2.57 | 158.17 |
| 1.8 | -0.66 | 150.04 | 6.35 | 67.47 | -33.19 | 11.13 | -2.66 | 155.39 |
| 2.0 | -0.60 | 144.26 | 5.75 | 59.82 | -32.84 | 4.95 | -2.64 | 151.03 |
| 2.2 | -0.56 | 139.27 | 4.95 | 51.93 | -32.47 | 3.98 | -2.59 | 146.61 |
| 2.4 | -0.75 | 135.92 | 3.91 | 45.80 | -32.62 | 1.55 | -2.57 | 141.55 |
| 2.6 | -0.58 | 132.79 | 3.16 | 40.57 | -32.36 | 2.07 | -2.28 | 139.39 |
| 2.8 | -0.55 | 132.30 | 2.52 | 36.55 | -32.25 | 2.62 | -2.33 | 138.20 |
| 3.0 | -0.64 | 129.89 | 2.01 | 31.75 | -31.94 | 0.51 | -2.37 | 136.78 |
| 3.2 | -0.69 | 126.19 | 1.69 | 26.65 | -31.44 | 1.40 | -2.40 | 135.83 |
| 3.4 | -0.84 | 121.41 | 1.48 | 20.86 | -30.84 | -2.57 | -2.54 | 133.06 |
| 3.6 | -0.93 | 115.44 | 1.06 | 12.97 | -30.84 | -4.71 | -2.68 | 126.60 |
| 3.8 | -0.85 | 110.18 | 0.51 | 5.81 | -30.20 | -10.30 | -2.63 | 119.65 |
| 4.0 | -0.80 | 106.76 | -0.04 | -0.51 | -30.40 | -11.85 | -2.51 | 114.02 |

Application Circuit 860-960 MHz (TQP7M9105-PCB900)


Notes:

1. See Evaluation Board PCB Information section for PCB material and stack-up.
2. Components shown on the silkscreen but not on the schematic are not used.
3. The recommended component values are dependent upon the frequency of operation.
4. All components are of 0603 size unless stated on the schematic.
5. Critical component placement locations:

Distance from U1 Pin 1 Pad (left edge) to R1 (right edge): 100 Mils ( $4.85^{\circ}$ at 940 MHz ) Distance from U1 Pin 1 Pad (left edge) to C6 (right edge): 270 Mils ( $13.1^{\circ}$ at 940 MHz ) Distance from U1 Pin 3 Pad (right edge) to C7 (left edge): 40 Mils ( $1.94^{\circ}$ at 940 MHz ) Distance from U1 Pin 3 Pad (right edge) to L2 (left edge): 120 Mils ( $5.82^{\circ}$ at 940 MHz ) Distance from U1 Pin 3 Pad (right edge) to C8 (left edge): 260 Mils ( $12.6^{\circ}$ at 940 MHz )

## Bill of Material

| Ref Des | Value | Description | Manuf. | Part Number |
| :---: | :---: | :---: | :---: | :---: |
| n/a | n/a | Printed Circuit Board | TriQuint | 1080068 |
| U1 | n/a | TQP7M9105 Amplifier, SOT-89 pkg. | TriQuint | 1077953 |
| C1 | 3.3 pF | Cap., Chip, 0603, +/-0.1pF, 50V, Accu-P | AVX | 06035J3R3ABSTR |
| C2 | 100 pF | Cap., Chip, 0603, 5\%, 50V, NPO/COG | various |  |
| C3 | 1000pF | Cap., Chip, 0603, 5\%, 50V, NPO/COG | various |  |
| C4 | 0.1 uF | Cap., Chip, 0603, $10 \%$, 16V, X7R | various |  |
| C5 | 1.0 uF | Cap., Chip, 0603, 10\%, 10V, X5R | various |  |
| C7 | 1.5 pF | Cap., Chip, 0603, +/-0.05pF, 50V, Accu-P | AVX | 06035J1R5ABSTR |
| C6, C8 | 4.7 pF | Cap., Chip, 0603, +/-0.05pF, 50V, Accu-P | AVX | 06035J4R7ABSTR |
| L1 | 10 nH | Inductor, 0805, 5\%, Coilcraft CS Series | Coilcraft | 0805CS-100XJLB |
| L2 | 2.2 nH | Inductor, 0603, $+/-0.3 \mathrm{nH}$ | Toko | LL1608-FSL2N2S |
| R1 | $1 \Omega$ | Resistor, Chip, 0603, 5\%, 1/16W | various |  |

## Typical Performance 860-960 MHz (TQP7M9105-PCB900)

| Frequency | MHz | 860 | 880 | 900 | 920 | 940 | 960 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Gain | dB | 18.9 | 19.2 | 19.3 | 19.4 | 19.4 | 19.3 |
| Input Return Loss | dB | -7.9 | -9.5 | -11.3 | -13 | -14 | -13 |
| Output Return Loss | dB | -16.2 | -16.7 | -16.8 | -15 | -15 | -14 |
| Output P1dB | dBm | +29 | +29.2 | +29.5 | +29.9 | +30.0 | +29.8 |
| Output IP3 (+15 dBm/tone, $\Delta \mathrm{f}=1 \mathrm{MHz}$ ) | dBm | +48 | +50.2 | +50.6 | +49.5 | +49.2 | +49 |
| WCDMA Channel power (at -50 dBc ACLR) ${ }^{(1)}$ | dBm | 20 | 20.2 | 20.5 | +20.5 | +20.5 | +20.5 |
| Noise Figure | dB | 6.8 | 6.6 | 6.4 | 6.4 | 6.4 | 6.3 |
| Supply Voltage, Vcc | V | +5 |  |  |  |  |  |
| Quiescent Collector Current, Icq | mA | 220 |  |  |  |  |  |

Notes:

1. ACLR Test set-up: 3GPP WCDMA, TM1+64 DPCH, PAR $=9.7 \mathrm{~dB}$ at $0.01 \%$ Prob.

## RF Performance Plots 860-960 MHz (TQP7M9105-PCB900)



Disclaimer: Subject to change without notice Connecting the Digital World to the Global Network ${ }^{\circledR}$

## Pin Configuration and Description



| Pin | Symbol | Description |
| :--- | :--- | :--- |
| 1 | RF IN | RF Input. Requires external match for optimal performance. External DC <br> Block required. |
| 2,4 | GND | RF/DC Ground Connection |
| 3 | RFout / Vcc | RF Output. Requires external match for optimal performance. External DC <br> Block and supply voltage is required. |

## Evaluation Board PCB Information

TriQuint PCB 1080068 Material and Stack-up


50 ohm line dimensions: width $=.031$ ", spacing $=.035$ " .


## Mechanical Information

## Package Marking and Dimensions

Marking: Part number - 7M9105
Assembly code - YXXX


## PCB Mounting Pattern



NOTES:

1. The pad pattern shown has been developed and tested for optimized assembly at TriQuint Semiconductor. The PCB land pattern has been developed to accommodate lead and package tolerances. Since surface mount processes vary from supplier to supplier, careful process development is recommended.
2. All dimensions are in millimeters [inches]. Angles are in degrees.
3. Use 1 oz . copper minimum for top and bottom layer metal.
4. Vias are required under the backside paddle of this device for proper RF/DC grounding and thermal dissipation. We recommend a $0.35 \mathrm{~mm}(\# 80 / .0135$ ") diameter bit for drilling via holes and a final plated thru diameter of $0.25 \mathrm{~mm}(0.10$ ").
5. Ensure good package backside paddle solder attach for reliable operation and best electrical performance.
6. Place mounting screws near the part to fasten a back side heat sink.
7. Do not apply solder mask to the back side of the PC board in the heat sink contact region.
8. Ensure that the backside via region makes good physical contact with the heat sink.

## Product Compliance Information

## ESD Information

## Caution! ESD-Sensitive Device

ESD Rating: Class 1C

Value: $\quad \geq 1000 \mathrm{~V}$ and $<2000 \mathrm{~V}$
Test: Human Body Model (HBM)
Standard: JEDEC Standard JESD22-A114
ESD Rating: Class IV
Value: $\quad \geq 2000$ V min
Test: Charged Device Model (CDM)
Standard: JEDEC Standard JESD22-C101

## MSL Rating

Moisture Sensitivity Level (MSL) 3 at $260^{\circ} \mathrm{C}$ convection reflow per JEDEC standard IPC/JEDEC J-STD-020.

## Solderability

Package lead plating: NiPdAu
Compatible with both lead-free ( $260{ }^{\circ} \mathrm{C}$ max. reflow temperature) and tin/lead ( $245{ }^{\circ} \mathrm{C}$ max. reflow temperature) soldering processes.

## RoHS Compliance

This part is compliant with EU 2002/95/EC RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment).

This product also has the following attributes:

- Lead Free
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A $\left(\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{Br}_{4} \mathrm{O}_{2}\right)$ Free
- PFOS Free
- SVHC Free


## Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations, and information about TriQuint:

```
Web: www.triquint.com Tel: +1.503.615.9000
Email: info-sales@tgs.com Fax: +1.503.615.8902
```

For technical questions and application information: Email: sicapplications.engineering@tqs.com

## Important Notice

The information contained herein is believed to be reliable. TriQuint makes no warranties regarding the information contained herein. TriQuint assumes no responsibility or liability whatsoever for any of the information contained herein. TriQuint assumes no responsibility or liability whatsoever for the use of the information contained herein. The information contained herein is provided "AS IS, WHERE IS" and with all faults, and the entire risk associated with such information is entirely with the user. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for TriQuint products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information.

TriQuint products are not warranted or authorized for use as critical components in medical, life-saving, or lifesustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

