

Low Cost 10-Bit Monolithic D/A Converter

AD561

1.0 SCOPE

This specification documents the detailed requirements for Analog Devices space qualified die including die qualification as described for Class K in MIL-PRF-38534, Appendix C, Table C-II except as modified herein.

The manufacturing flow described in the STANDARD DIE PRODUCTS PROGRAM brochure at <u>http://www.analog.com/aerospace</u> is to be considered a part of this specification.

This data sheet specifically details the space grade version of this product. A more detailed operational description and a complete data sheet for commercial product grades can be found at www.analog.com/AD561

2.0 Part Number. The complete part number(s) of this specification follow:

Part Number	Description
AD561-000C	Low Cost 10-Bit Monolithic D/A Converter

3.0 Die Information

3.1 Die Dimensions

Die Size	Die Thickness	Bond Pad Metalization
106 mil x 153 mil	19 mil ± 2 mil	Al/Cu
	Picture	 GND BPOS -Vs LSB BIT 9 BIT 8 BIT 7 BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 MSB +Vs Iout RFB

ASD0012515

3.2

Rev. F

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent, or patent rights of Analog Devices. Trademerks and registered trader ar. s as the property of their respective companies.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

log De

Tel: 781.329.4700

Fax

3.3 Absolute Maximum Ratings 1/2/

Digital Input Voltage (V _{IN})	V _{CC} to Ground
Output Voltage Compliance (V _{OUT})	-2V to +10V
10V Span Resistor to Ground	V_{CC} to V_{EE}
Bipolar Offset Resistor To Ground	V_{CC} to V_{EE}
Operating Temperature Range	-55°C to +125°C
Storage Temperature Range	-65°C to +150°C
Supply Voltage	±16.5V
Junction Temperature (T _J)	175°C

Absolute Maximum Ratings Notes

- <u>1/</u> T_A = 25°C, unless otherwise noted.
- 2/ Stresses above the absolute maximum rating may cause permanent damage to the device. Extended operation at the maximum levels may degrade performance and affect reliability.

4.0 Die Qualification

In accordance with class-K version of MIL-PRF-38534, Appendix C, Table C-II, except as modified herein.

- (a) Qual Sample Size and Qual Acceptance Criteria -25/2
- (b) Qual Sample Package Sidebrazed DIP
- (c) Pre-screen electrical test over temperature performed post-assembly prior to die qualification.

Table I - Dice Electrical Characteristics						
Parameter	Symbol	$\begin{array}{c c} Conditions & Limit \\ \underline{1/} & Min \end{array}$		Limit Max	Units	
Relative Accuracy	RA			±0.5	LSB	
Differential Nonlinearity	DNL	Major carry transitions		±1	LSB	
Gain Error <u>2/</u>	A_E	With fixed 25Ω resistor		±0.5	% of FS	
Unipolar Offset Error <u>2/</u>	V _{os}			±0.05	% of FS	
Bipolar Zero Error	B_{PZE}	With 10Ω resistor		±3.5	LSB	
Output Current	I _{OUT}	Digital inputs at logic "1"	1.5	2.4	mA	
Power Supply Gain	P _{SS1}	V _{CC} , +4.5V to +5.5V V _{CC} , +13.5V to +16.5V		±10	PPM of	
Sensitivity	P _{SS2}	V_{EE} , -10.8V to -13.2V V_{EE} , -13.2V to -16.5V		±25	FS/%	

www.BD¹1⁵ le^F le^{Page} 20f m/ADI/

Table I - Dice Electrical Characteristics						
Parameter	Symbol	Conditions $\frac{1}{2}$	Limit Min	Limit Max	Units	
Power Supply Current 2/	I _{CC}	V _{CC} , +4.5V to +16.5V		10		
Tower Suppry Current <u>2/</u>	I_{EE}	V_{EE} , -10.8V to -16.5V		16	mA	
Power Dissipation	P _D			500	mW	
Digital Input High Voltage	V _{IH}		2.0		V	
Digital Input Low Voltage	V _{IL}			0.8	V	
Digital Input High Current	I _{IH}	Digital "1" = 15V		±100	nA	
Digital Input Low Current	I_{IL}	Digital "0" = 0V		±25	μΑ	

Table I Notes:

- $\begin{array}{ll} \underline{1/} & V_{CC} = +5V, \, V_{EE} = -15V, \, T_A = 25^\circ C, \, \text{unless otherwise specified.} \\ \underline{2/} & \text{Also tested in CMOS mode.} \, V_{CC} = +15V, \, V_{EE} = -15V, \, V_{IH} = 10.5V, \, V_{IL} = 4.5V. \end{array}$

www.BD^{stol21}^cC^e.F | Page 3 of m/ADI/

Table II - Electrical Characteristics for Qual Samples							
Parameter	Symbol	Conditions $\frac{1}{2}$	Sub- groups	Limit Min	Limit Max	Units	
Relative Accuracy	RA		1		±0.5	LSB	
Differential Nonlinearity	DNL	Major carry transitions	1, 2, 3		±1	LSB	
Gain Error <u>2/</u>	A_E	With fixed 25Ω resistor	1		±0.5	% of FS	
Gain Error Temperature Coefficient	TCA _E		2, 3		±60	ppm of FS/°C	
Unipolar Offset Error <u>2/</u>	V _{OS}		1		±0.05	% of FS	
Unipolar Error Temperature Coefficient	TCV _{OS}		2, 3		±10	ppm of FS/°C	
Bipolar Zero Error	$\mathbf{B}_{\mathrm{PZE}}$	With 10Ω resistor	1		±3.5	LSB	
Bipolar Zero Error Temperature Coefficient	TCB _{PZE}		2, 3		±20	ppm of FS/°C	
Output Current	I _{OUT}	Digital inputs at logic "1"	1	1.5	2.4	mA	
Power Supply Gain	P _{SS1}	V_{CC} , +4.5V to +5.5V V_{CC} , +13.5V to +16.5V	1		±10	PPM of	
Sensitivity	P _{SS2}	V_{EE} , -10.8V to -13.2V V_{EE} , -13.2V to -16.5V	1		±25	FS/%	
Power Supply Current <u>2/</u>	I _{CC}	V_{CC} , +4.5V to +16.5V	1		10	mA	
Fower Suppry Current $\underline{z_i}$	I_{EE}	V_{EE} , -10.8V to -16.5V	1		16	IIIA	
Power Dissipation	P _D		1		500	mW	
Digital Input High Voltage	V _{IH}		1	2.0		V	
Digital Input Low Voltage	V _{IL}		1		0.8	V	
Digital Input High Current	I _{IH}	Digital "1" = 15V	1		±100	nA	
Digital Input Low Current	I_{IL}	Digital " 0 " = $0V$	1		±25	μΑ	

Table II Notes:

- $\underline{1/}$ V_{CC} = +5V, V_{EE} = -15V, unless otherwise specified.
- <u>2/</u> Also tested in CMOS mode. $V_{CC} = +15V$, $V_{EE} = -15V$, $V_{IH} = 10.5V$, $V_{IL} = 4.5V$.

www.BD¹²¹⁵ Fe^F Page 4 of 6 m/ADI/

Table III - Life Test Endpoint and Delta Parameter								
(Product is teste	(Product is tested in accordance with Table II with the following exceptions)							
		Sub-	Post Burn In Limit Post Life Test Lim			Test Limit	Life	
Parameter	Symbol	~ ~ ~ ~					Test	Units
		groups	Min	Max	Min	Max	Delta	
Power Supply Current	I _{CC}	1		10		13	±3	mA
Tower Suppry Current	I _{EE}	1		16		19	±3	IIIA
Output Current	I _{OUT}	1	1.5	2.4	1.4	2.5	±0.5	mA

5.0 Life Test/Burn-In Information

- 5.1 HTRB is not applicable for this drawing.
- **5.2** Burn-in is per MIL-STD-883 Method 1015 test condition B or C.
- **5.3** Steady state life test is per MIL-STD-883 Method 1005.

www.BD^{\strol215}Rev.FlPege5 of 6m/ADI/

Rev	Description of Change	Date
Α	Initiate	5-Jun-091
В	Update web address	Jan. 25, 2002
С	Update web address. Change IOUT delta from 5 to 0.5.	Aug. 14, 2003
D	Update header/footer and add to 1.0 Scope description.	Feb. 26, 2008
E	Add Junction Temperature (T _J)175°C to 3.3 Absolute Max. Ratings	March 28, 2008
F	Updated Section 4.0c note to indicated pre-screen temp testing being	June 6 2009
	performed.	

© 2009 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective companies. Printed in the U.S.A. 06/09

www.analog.com

www.BD¹²1⁵ ^{Ie}C⁻.com/ADI/