

12-Bit, Current Output, **Complete High Speed D/A Converter**

AD565

1.0 **SCOPE**

This specification documents the detail requirements for space qualified die manufactured on Analog Devices, Inc.'s QML certified line per MIL-PRF-38534 class K except as modified herein. The manufacturing flow described in the STANDARD DIE PRODUCTS PROGRAM brochure at

http://www.analog.com/aerospace is to be considered a part of this specification.

This data sheet specifically details the space grade version of this product. A more detailed operational description and a complete data sheet for commercial product grades can be found at www.analog.com/AD565

2.0 **Part Number**. The complete part number(s) of this specification follow:

Description Part Number AD565-000C 12-Bit, Current Output, Complete High Speed D/A Converter

3.0 **Die Information**

3.1 **Die Dimensions**

Die Size	Die Thickness mil	Bond Pad Metalization		
119 mil x 146 mil	19 mil ± 2 mil	Al/Cu		

3.2 **Die Picture**

ASD0012329

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license atent o is granted by implication or otherwise under anynater Analog Devices, Trademer bertv their respective companie

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

Tel: 781.329 4700

AD565

3.3 Die Qualification

In accordance with class-K version of MIL-PRF-38534, Appendix C, Table C-II, except as modified herein.

- (a) Qual Sample Size and Qual Acceptance Criteria -10/0
- (b) Qual Sample Package Sidebrazed DIP
- (c) Pre-screen test post assembly required prior to die qualification, to remove all assembly related rejects.

4.0 Dice Electrical Characteristics

Table I						
Parameter	Symbol	ConditionsLimitNote 1Min		Limit Max	Units	
Relative Accuracy	RA	All bits w/ positive errors on All bits w/ negative errors on		±0.5	LSB	
Differential Nonlinearity	DNL	Major transition		±0.75	LSB	
Gain Error	A_E	$R_{REF} = 50\Omega$ fixed		±0.25	% of FS	
Offset Error	V _{OS}			±0.05	% of FS	
Bipolar Zero Error Note 2	\mathbf{B}_{PZE}	$R_{BO} = 50\Omega$ fixed		±0.15	% of FS	
Reference Output Voltage	V_{REF}	Note 3	9.90	10.10	V	
Output Current	I _{OUT}	Unipolar (all bits on)	-1.6	-2.4	mA	
		Bipolar (all bits on)	-0.8	-1.2	IIIA	
Power Supply Rejection Ratio	PSRR	$V_{\rm S} = +11.4$ V to $+16.5$ V dc		±10.0	PPM of FRS/%	
		$V_{\rm S} = -11.4$ V to -16.5 V dc		±25.0	11 W 01 WS/70	
Power Supply Current Note 4, 5	I _{CC}			+5.0	mA	
	I_{EE}			-18.0		
Power Dissipation	PD			345.0	mW	
Digital Input High Voltage	V_{IH}		2.0	5.5	V	
Digital Input Low Voltage	V_{IL}			0.8	V	
Digital Input High Current	I_{IH}	$V_{\rm IH} = 5.5 V$		300.0	μΑ	
Digital Input Low Current	I _{IL}	$V_{IL} = 0V$		100.0	μA	

Table I Notes:

- 1. $V_{CC} = +15V$, $V_{EE} = -15V$, $V_{IH} = 2.0V$, $V_{IL} = 0.8V$, $T_A = 25^{\circ}C$.
- 2. MSB on, all other bits off.
- 3. The reference output is loaded with 0.5mA reference input current, 1.0mA bipolar offset current, and 1.5mA additional current.
- 4. Guaranteed for $+11.4 \le V_{CC} \le +16.5V$.
- 5. Guaranteed for $-11.4 \le V_{EE} \le -16.5V$.

Table II							
Parameter	Symbol	Conditions Note 1	Sub- groups	Limit Min	Limit Max	Units	
Relative Accuracy	RA	All bits w/ positive errors on	1		±0.5	LSB	
		All bits w/ negative errors on	2, 3		±0.75		
Differential Nonlinearity	DNL	Major transition	1		± 0.75 +1.0	LSB	
Gain Error	A _E	$R_{RFF} = 50\Omega$ fixed	1		±0.25	% of FS	
Gain Error Temperature Coefficient	TCA _E		2, 3		±30.0	ppm of FS/°C	
Offset Error	Vos		1		±0.05	% of FS	
Offset Error Tempereature Coefficient	TCV _{OS}		2, 3		±2.0	ppm of FS/°C	
Bipolar Zero Error Note 2	$\mathbf{B}_{\mathrm{PZE}}$	$R_{BO} = 50\Omega$ fixed	1		±0.15	% of FS	
Bipolar Zero Error Temperature Coefficient Note 2	TCB _{PZE}		2, 3		±10.0	ppm of FS/°C	
Reference Output Voltage Note 3	V _{REF}		1, 2, 3	9.90	10.10	V	
Reference Output Current Note 4	I _{REF}		1	1.5		mA	
Output Current	I _{OUT}	Unipolar (all bits on) Bipolar (all bits on)	1	-1.6	-2.4	mA	
Power Supply Rejection	PSRR	$V_{\rm S} = +11.4$ V to +16.5V dc	1		±10.0	PPM of	
Ratio		$V_{\rm S} = -11.4$ V to -16.5 V dc			±25.0	FRS/%	
Power Supply Current	I _{CC}		1		+5.0		
Note 4, 5	I _{EE}		1		-18.0		
Power Dissipation	P _D		1		345.0	mW	
Digital Input High Voltage	V _{IH}		1	2.0	5.5	V	
Digital Input Low Voltage	V _{IL}		1		0.8	V	
Digital Input High Current	I _{IH}	$V_{\rm IH} = 5.5 V$	1		300.0	μA	
Digital Input Low Current	I _{IL}	$V_{IL} = 0V$	1		100.0	μΑ	

4.1 Electrical Characteristics for Qual Samples

Table II Notes:

1. $V_{CC} = +15V$, $V_{EE} = -15V$, $V_{IH} = 2.0V$, $V_{IL} = 0.8V$.

2. MSB on, all other bits off.

3. In subgroup 1, the reference output is loaded with 0.5mA reference input current, 1.0mA bipolar offset current, and 1.5mA additional current. In subgroup 2 and 3, only the 0.5mA reference input current is applied. The reference must be buffered to supply external loads at elevated temperatures.

4. Guaranteed for $+11.4 \le V_{CC} \le +16.5V$.

5. Guaranteed for $-11.4 \le V_{EE} \le -16.5 V$.

AD565

4.2 Delta Parameter Table

Table III								
Parameter Sym	0 1 1	Sub-	Post Burn In Limit P		Post Life Test Limit		Life	.
	Symbol	groups	Min	Max	Min	Max	Delta	Units
Gain Error	A _E	1		±0.25		±0.30	±0.05	% of FS
Bipolar Zero Error	B _{PZE}	1		±0.15		±0.225	±0.075	% of FS

5.0 Life Test/Burn-In Information

- 5.1 HTRB is not applicable for this drawing.
- **5.2** Burn-in is per MIL-STD-883 Method 1015 test condition B or C.
- **5.3** Steady state life test is per MIL-STD-883 Method 1005.

Rev	Description of Change	Date
Α	Initiate	June 26, 2001
В	Update web address. Fix footer	Jan. 25, 2002
С	Update web address.	Aug. 5, 2003
D	Update header/footer & add to 1.0 Scope description.	Feb. 26, 2008

© 2008 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective companies. Printed in the U.S.A. 02/08

www.analog.com