Dual Precision,

FEATURES
DC Performance
$400 \mu \mathrm{~A}$ max Quiescent Current
10 pA max Bias Current, Warmed Up (AD648B)
$1 \mu \mathrm{~V}$ max Offset Voltage (AD648B)
$10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max Drift (AD648B)
$2 \mu \mathrm{~V}$ p-p Noise, 0.1 Hz to 10 Hz
AC Performance
1.8 V/us Slew Rate

1 MHz Unity Gain Bandwidth
Available in Plastic Mini-DIP, CERDIP, and Plastic SOIC Packages
MIL-STD-883B Parts Available
Surface Mount (SOIC) Package Available in Tape and Reel in Accordance with EIA-481A Standard Single Version: AD548

CONNECTION DIAGRAM

Plastic Mini-Dip (N) Package, Plastic SOIC (R) Package

and
CERDIP (Q) Package

$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ and the $\mathrm{AD} 648 \mathrm{~T}^{*}$ grade is available processed to MIL-STD-883B, Rev. C.

The AD648 is available in an 8-lead plastic mini-DIP, CERDIP, and SOIC.
*Not for new design, obsoleté April 2002.
PRODUCT HIGHLIGHTS

1. A combination of lowsupply current, excellent dc and ac performance and low drift makes the AD648 the ideal op amp for high performance, low power applications.
2. The AD648 is pin compatible with industry standard dual op amps such as the LF442, TL062, and AD642, enabling designers to improve performance while achieving a reduction in power dissipation of up to 85%.
3. Guaranteed low input offset voltage (2 mV max) and drift ($20 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max) for the AD648J are achieved using Analog Devices' laser drift trimming technology.
4. Analog Devices specifies each device in the warmed-up condition, insuring that the device will meet its published specifications in actual use.
5. Matching characteristics are excellent for all grades. The input offset voltage matching between amplifiers in the AD648J is within 2 mV .
6. Crosstalk between amplifiers is less than -120 dB at 1 kHz .
and AD 648 K are rated over the commercial temperature range of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. The AD648 and AD648B are rated over the industrial temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. The AD648S and AD648T are rated over the military temperature range of

REV. E

[^0]One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700
www.analog.com
Fax: 781/326-8703
© Analog Devices, Inc., 2002

SPECIFICATIONS (Continued)

NOTES

${ }^{1}$ Input Offset Voltage specifications are guaranteed after five minutes of operation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
${ }^{2}$ Bias Current specifications are guaranteed maximum at either input after five minutes of operation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. For higher temperature, the current doubles ${ }^{3}$ every $10^{\circ} \mathrm{C}$.
${ }^{4}$ Defined as voltages betuven inputs, such that heither exceeds $\pm 10 \mathrm{~V}$ from ground.
${ }^{5}$ Not for new design. Obsolete April 2002.
Specifications subject to change without notice.

AD648

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

Supply Voltage	
Internal Power Dissipation ${ }^{2}$	500 mW
Input Voltage ${ }^{3}$	$\pm 18 \mathrm{~V}$
Output Short Circuit Duration	Indefinite
Differential Input Voltage	$+\mathrm{V}_{\mathrm{S}}$ and $-\mathrm{V}_{\mathrm{S}}$
Storage Temperature Range (Q, H)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
(N, R)	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature Range	
AD648J/K	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
AD648A/B	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
AD648S/T	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature Range (Solder	$300^{\circ} \mathrm{C}$

NOTES

${ }^{1}$ Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{2}$ Thermal Characteristics:
8-Pin Plastic Package: $\theta_{\mathrm{JA}}=165^{\circ} \mathrm{C} / \mathrm{Watt}$
8-Pin CERDIP Package: $\theta_{\text {IC }}=22^{\circ} \mathrm{C} /$ Watt; $\theta_{\text {IA }}=110^{\circ} \mathrm{C} / \mathrm{Watt}$
8 -Pin SOIC Package: $\theta_{\mathrm{JC}}=42^{\circ} \mathrm{C} / \mathrm{W}$ at; $\theta_{\mathrm{JA}}=160^{\circ} \mathrm{C} / \mathrm{Watt}$
${ }^{3}$ For supply voltages less than $\pm 18 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD648 featur proprietary ESD protection circuitry, permanent damage may
occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD

Figure 1. Input Voltage Range vs. Suppiy Voltage

Figure 4 Opiescent Cumert us. simann.

Figure 7. Input Bias Current vs. Common-Mode Voltage

Figure 10. Open-Loop Frequency Response
REV. E

Figure 2. Output Voitage Swing vs. Supply Voltage

Figure 8. Change in Offset Voltage vs. Warm-Up Time

Figure 11. Open-Loop Voltage Gain vs. Supply Voltage

Figure 9. Open-Loop Gain vs. Temperature

Figure 12. PSRR vs. Frequency

Figure 13. CMRR vs. Frequency

Figure 16. Total Harmonic Distortion vs. Frequency

Figure 19a. Unity Gain Follower

Figure 20a. Unity Gain Inverter

Figure 14. Large Signal Frequency Response

Figure 17. Input Noise Voltage Spectral Density

Figure 19b. Unity Gain Follower Pulse Response (Large Signal)

Figure 20b. Unity Gain Inverter Pulse Response (Large Signal)

Figure 19c. Unity Gain Follower Pulse Response (Small Signal)

Figure 20c. Unity Gain Inverter Pulse Response (Small Signal)

APPLICATION NOTES

The AD648 is a pair of JFET-input op amps with a guaranteed maximum I_{B} of less than 10 pA , and offset and drift lasertrimmed to 1.0 mV and $10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, respectively (AD648B). AC specs include 1 MHz bandwidth, $1.8 \mathrm{~V} /$ us typical slew rate and 8μ s settling time for a 20 V step to $\pm 0.01 \%$-all at a supply current less than $400 \mu \mathrm{~A}$. To capitalize on the device's performance, a number of error sources should be considered.
The minimal power drain and low offset drift of the AD648 reduce self-heating or "warm-up" effects on input offset voltage, making the AD648 ideal for on/off battery powered applications. The power dissipation due to the AD648's $400 \mu \mathrm{~A}$ supply current has a negligible effect on input current, but heavy output loading will raise the chip temperature. Since a JFET's input current doubles for every $10^{\circ} \mathrm{C}$ rise in chip temperature, this can be a noticeable effect.

The amplifier is designed to be functional with power supply voltages as low as $\pm 4.5 \mathrm{~V}$. It will exhibit a higher input offset voltage than at the rated supply voltage of $\pm 15 \mathrm{~V}$, due to power supply rejection effects. Common-mode range extends from 3 V more positive than the negative supply to 1 V more negative than the positive supply. Designed to cleanly drive up to $10 \mathrm{k} \Omega$ and 100 pF loads, the AD648 will drive a $2 \mathrm{k} \Omega$ load with reduced open-loop gain.
Figure 21 shows the recommended crosstalk test circuit. A typical value for crosstalk is -120 dB at 1 kHz .

Figure 21. Crosstalk Test Circuit

LAYOUT

To take full advantage of the AD648's 10 pA max input current, parasitic leakages must be kept below an acceptable level. The practical limit of the resistance of epoxy or phenolic circuit board material is between $1 \times 10^{12} \Omega$ and $3 \times 10^{12} \Omega$. This can result in an additional leakage of 5 pA between an input of 0 V and a -15 V supply line. Teflon or a similar low leakage material (with a resistance exceeding $10^{17} \Omega$) should be used to isolate high impedance input lines from adjacent lines carrying high voltages. The insulator should be kept clean, since contaminants will degrade the surface resistance.
A metal guard completely surrounding the high impedance nodes and driven by a voltage near the common-mode input potential can also be used to reduce some parasitic leakages. The guarding pattern in Figure 22 will reduce parasitic leakage due to finite board surface resistance; but it will not compensate for a low volume resistivity board.

Figure 22. Board Layout for Guarding Inputs

INPUT PROTECTION

The AD648 is guaranteed to withstand input voltages equal to the power supply potential. Exceeding the negative supply voltage on either input will forward bias the substrate junction of the chip. The induced current may destroy the amplifier due to excess heat.
Input protection is required in applications such as a flame detector in a gas chromatograph, where a very high potential may be applied to the input terminals during a sensor fault condition. Figures 23a and 23b show simple current limiting schemes that can be used. $\mathrm{R}_{\text {PROTECT }}$ should be chosen such that the maximum overload current is 1.0 mA (for example $100 \mathrm{k} \Omega$ for a 100 V overload).

Figure 23a. Input Protection of I-to-V Converter

Figure 23b. Voltage Follower Input Protection Method
Figure 23b shows the recommended method for protecting a voltage follower from excessive currents due to high voltage breakdown. The protection resistor, R_{P}, limits the input current. A nominal value of $100 \mathrm{k} \Omega$ will limit the input current to less than 1 mA with a 100 volt input voltage applied.
The stray capacitance between the summing junction and ground will produce a high-frequency roll-off with a corner frequency equal to:

$$
f_{\text {corner }}=\frac{1}{2 \pi R_{P} C_{\text {stray }}}
$$

Accordingly, a $100 \mathrm{k} \Omega$ value for R_{P} with a $3 \mathrm{pF} \mathrm{C}_{\text {stray }}$ will cause a 3 dB corner frequency to occur at 531 kHz .

AD648

Figure 23c shows a diode clamp protection scheme for an I-to-V converter using low leakage diodes. Because the diodes are connected to the op amp's summing junction, which is a virtual ground, their leakage contribution is minimal.

Figure 23c. I-to-V Converter with Diode Input Protection
Exceeding the negative common-mode range on either input terminal causes a phase reversal at the output, forcing the amplifier output to the corresponding high or low state. Exceeding the negative common mode on both inputs simultaneously forces the output high. Exceeding the positive common-mode range on a single input does not cause a phase reversal; but if both inputs exceed the limit, the output will be forced high. In all cases, normal amplifier operation is resumed when input voltages are brought back within the common-mode range.

D/A CONVERTER BIPOLAR OUTPUT BUFFER
The circuit in Figure 24 provides 4 quadrant multiplication with a resolution of 12 bits. The AD648 is used to convert the AD7545

CMOS DAC's output current to a voltage and provides the necessary level shifting to achieve a bipolar voltage output. The circuit operates with a 12-bit plus sign input code. The transfer function is shown in Figure 25.
The AD7592 is a fully protected dual CMOS SPDT switch with data latches. R4 and R5 should match to within 0.01% to maintain the accuracy of the converter. A mismatch between R4 and R 5 introduces a gain error. Overall gain is trimmed by adjusting R_{IN}. The AD648's low input offset voltage, low drift over temperature, and excellent dynamics make it an attractive low power output buffer.
The input offset voltage of the AD648 output amplifier results in an output error voltage. This error voltage equals the input offset voltage of the op amp times the noise gain of the amplifier.
That is:

$$
V_{O S} \text { Output }=V_{O S} \operatorname{Input}\left(1+\frac{R_{F B}}{R_{O}}\right)
$$

R_{FB} is the feedback resistor for the op amp, which is internal to the DAC. R_{O} is the DAC's R-2R ladder output resistance. The value of R_{O} is code dependent. This has the effect of changing the offset error voltage at the amplifier's output. An output amplifier with a sub millivolt input offset voltage is needed to preserve the linearity of the DAC's transfer function.

Figure 24. 12-Bit Plus Sign Magnitude D/A Converter

SIGN BIT	BINARY NUMBER IN DAC REGISTER	ANALOG OUTPUT
0	111111111111	$+\mathrm{V}_{\text {IN }} \times(4095 / 4096)$
0	000000000000	0 V
1	0000	00000000
1	111111111111	-V
NOTE		
SIGN BIT AT "0" CONNECTS THE NONINVERTING INPUT OF		
A2 TO ANALOG COMMON		

Figure 25. Sign Magnitude Code Table

The AD648 in this configuration provides a 700 kHz small signal bandwidth and $1.8 \mathrm{~V} / \mu \mathrm{s}$ typical slew rate. The 33 pF capacitor across the feedback resistor optimizes the circuit's response. The oscilloscope photos in Figures 26a and 26b show small and large signal outputs of the circuit in Figure 24. Upper traces show the input signal V_{IN}. Lower traces are the resulting output voltage with the DAC's digital input set to all 1 s . The circuit settles to $\pm 0.01 \%$ for a 20 V input step in $14 \mu \mathrm{~s}$.

Figure 26a. Response to ± 20 V p-p Reference Square Wave

DUAL PHOTODIODE PREAMP

The performance of the dual photodiode preamp shown in Figure 27 is enhanced by the AD648's low input current, input voltage offset, and offset voltage drift. Each photodiode sources a current proportional to the incident light power on its surface. R_{F} converts the photodiode current to an output voltage equal to $\mathrm{R}_{\mathrm{F}} \times \mathrm{I}_{\mathrm{S}}$.
An error budget illustrating the importance of low amplifier input current, voltage offset, and offset voltage drift to minimize output voltage errors can be developed by considering the equivalent circuit for the small ($0.2 \mathrm{~mm}^{2}$ area) photodiode shown in Figure 27. The input current results in an error proportional to the feedback resistance used. The amplifier's offset will produce an error proportional to the preamp's noise gain $\left(1+R_{F} / R_{S H}\right)$, where $R_{S H}$ is the photodiode shunt resistance. The amplifier's input current will double with every $10^{\circ} \mathrm{C}$ rise in temperature, and the photodiode's shunt resistance halves with every $10^{\circ} \mathrm{C}$ rise. The error budget in Figure 28 assumes a room temperature photodiode R_{SH} of $500 \mathrm{M} \Omega$, and the maximum input current and input offset voltage specs of an AD648C.

The capacitance at the amplifier's negative input (the sum of the photodiode's shunt capacitance, the op amp's differential input capacitance, stray capacitance due to wiring, etc.) will cause a rise in the preamp's noise gain over frequency. This can result in excess noise over the bandwidth of interest. C_{F} reduces the noise gain "peaking" at the expense of signal bandwidth.

Figure 26b. Response to $\pm 100 \mathrm{mV}$ p-p Reference Square Wave

Figure 27. A Dual Photodiode Pre-Amp

TEMP ${ }^{\circ} \mathrm{C}$	$\mathrm{R}_{\text {SH }}$ $(\mathrm{M} \Omega)$	$\mathrm{V}_{\text {OS }}$ $(\mu \mathrm{V})$	$\left(1+\mathrm{R}_{\mathrm{F}} / \mathrm{R}_{\text {SH }}\right) \mathrm{V}_{\text {OS }}$	I_{B} (pA)	$\mathrm{I}_{\mathrm{B}} \mathrm{R}_{\mathrm{F}}$	TOTAL
-25	15,970	150	$151 \mu \mathrm{~V}$	0.30	$30 \mu \mathrm{~V}$	$181 \mu \mathrm{~V}$
0	2,830	225	$233 \mu \mathrm{~V}$	2.26	$262 \mu \mathrm{~V}$	$495 \mu \mathrm{~V}$
+25	500	300	$360 \mu \mathrm{~V}$	10.00	1.0 mV	1.36 mV
+50	88.5	375	$800 \mu \mathrm{~V}$	56.6	5.6 mV	6.40 mV
+75	15.6	450	3.33 mV	320	32 mV	35.3 mV
+85	7.8	480	6.63 mV	640	64 mV	70.6 mV

Figure 28. Photodiode Pre-Amp Errors Over Temperature

AD648

INSTRUMENTATION AMPLIFIER

The AD648J's maximum input current of 20 pA per amplifier makes it an excellent building block for the high input impedance instrumentation amplifier shown in Figure 29. Total current drain for this circuit is under $600 \mu \mathrm{~A}$. This configuration is optimal for conditioning differential voltages from high impedance sources.
The overall gain of the circuit is controlled by R_{G}, resulting in the following transfer function:

$$
\frac{V_{O U T}}{V_{I N}}=1+\frac{(R 3+R 4)}{R_{G}}
$$

Gains of 1 to 100 can be accommodated with gain nonlinearities of less than 0.01%. The maximum input current is 30 pA over
the common-mode range, with a common-mode impedance of over $1 \times 10^{12} \Omega$. The capacitors C1, C2, C3 and C4 compensate for peaking in the gain over frequency which is caused by input capacitance.
To calibrate this circuit, first adjust trimmer R1 for commonmode rejection with 10 V dc applied to the input pins. Next, adjust R 2 for zero offset at $\mathrm{V}_{\text {Out }}$ with both inputs grounded. Trim the circuit a second time for optimal performance.

The -3 dB small signal bandwidth for this low power instrumentation amplifier is 700 kHz for a gain of 1 and 10 kHz for a gain of 100 . The typical output slew rate is $1.8 \mathrm{~V} / \mu \mathrm{s}$.

Figure 29. Low Power Instrumentation Amplifier

LOG RATIO AMPLIFIER

Log ratio amplifiers are useful for a variety of signal conditioning applications, such as linearizing exponential transducer outputs and compressing analog signals having a wide dynamic range.
The AD648's picoamp level input current and low input offset voltage make it a good choice for the front end amplifier of the log ratio circuit shown in Figure 30. This circuit produces an output voltage equal to the \log base 10 of the ratio of the input currents I_{1} and I_{2}. Resistive inputs $R 1$ and $R 2$ are provided for voltage inputs.

Input currents I_{1} and I_{2} set the collector currents of Q 1 and Q 2 , a matched pair of logging transistors. Voltages at points A and B are developed according to the following familiar diode equation:

$$
V_{B E}=(k T / q) \ln \left(I_{C} / I_{E S}\right)
$$

In this equation, k is Boltzmann's constant, T is absolute temperature, q is an electron charge, and I_{ES} is the reverse saturation current of the logging transistors. The difference of these two voltages is taken by the subtractor section and scaled by a factor of approximately 16 by resistors R9, R10, and R8. Temperature compensation is provided by resistors R8 and R15,

Figure 30. Precision Log Ratio Amplifier

OUTLINE DIMENSIONS

\author{

Mini-DIP (N) Package

 Dimensions shown in inches and (millimeters)}

CERDIP (Q) Package

Dimensions shown in inches and (millimeters)

Revision History

CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN
COMPLIANT TO JEDEC STANDARDS MS-012 AA

Location

Data Sheet changed from REV. C to REV. E.

Change to SOIC (R-8) Package . 12
Edits to FEATURES
Deleted Connection Diagram . 1
Deleted AD648C column from SPECIFICATIONS . 2
Deleted METALIZATION PHOTOGRAPH . 3
Deleted Metal Can from Figure 22 . 6
Deleted TO-99 (H) from OUTLINE DIMENSIONS . 11

[^0]: Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

