Low Capacitance, Low Charge Injection, $\pm 15 \mathrm{~V} /+12 \mathrm{~V}$ iCMOS ${ }^{\text {TM }}$ Quad SPST Switches

ADG1211/ADG1212/ADG1213

FEATURES

1 pF off capacitance
2.6 pF on capacitance
$<1 \mathrm{pC}$ charge injection
33 V supply range
120Ω on resistance
Fully specified at $\pm 15 \mathrm{~V},+12 \mathrm{~V}$
No V_{L} supply required
3 V logic-compatible inputs
Rail-to-rail operation
16-lead TSSOP and 16-lead LFCSP
Typical power consumption: <0.03 $\boldsymbol{\mu W}$

APPLICATIONS

Automatic test equipment
Data acquisition systems
Battery-powered systems
Sample-and-hold systems
Audio signal routing

Video signal routing

Communication systems NMN_ $_{\text {- }}$

GENERAL DESCRIPTION

The ADG1211/ADG1212/ADG1213 are monolithic complementary metal-oxide semiconductor (CMOS) devices containing four independently selectable switches designed on an i CMOS (industrial CMOS) process. i CMOS is a modular manufacturing process combining high voltage CMOS and bipolar technologies. It enables the development of a wide range of high performance analog ICs capable of 33 V operation in a footprint that no previous generation of high voltage parts has been able to achieve. Unlike analog ICs using conventional CMOS processes, i CMOS components can tolerate high supply voltages while providing increased performance, dramatically lower power consumption, and reduced package size.

The ultralow capacitance and charge injection of these switches make them ideal solutions for data acquisition and sample-andhold applications, where low glitch and fast settling are required. Fast switching speed coupled with high signal bandwidth make the parts suitable for video signal switching.

Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

Figure 1.
i CMOS construction ensures ultralow power dissipation, making the parts ideally suited for portable and batterypowered instruments.

The ADG1211/ADG1212/ADG1213 contain four independent single-pole/single-throw (SPST) switches. The ADG1211 and ADG1212 differ only in that the digital control logic is inverted. The ADG1211 switches are turned on with Logic 0 on the appropriate control input, while Logic 1 is required for the ADG1212. The ADG1213 has two switches with digital control logic similar to that of the ADG1211; the logic is inverted on the other two switches. The ADG1213 exhibits break-beforemake switching action for use in multiplexer applications.

Each switch conducts equally well in both directions when on and has an input signal range that extends to the supplies. In the off condition, signal levels up to the supplies are blocked.

PRODUCT HIGHLIGHTS

1. Ultralow capacitance.
2. $<1 \mathrm{pC}$ charge injection.
3. 3 V logic-compatible digital inputs: $\mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}$.
4. No V_{L} logic power supply required.
5. Ultralow power dissipation: $<0.03 \mu \mathrm{~W}$.
6. 16-lead TSSOP and $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ LFCSP packages.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.461.3113 © 2005 Analog Devices, Inc. All rights reserved.

ADG1211/ADG1212/ADG1213

TABLE OF CONTENTS

Specifications. 3
Dual Supply

\qquad
Single Supply

\qquad
Absolute Maximum Ratings 6
ESD Caution 6
Pin Configurations and Function Descriptions 7
Terminology 8
Typical Performance Characteristics 9
Test Circuits 12
Outline Dimensions 14
Ordering Guide 15

REVISION HISTORY

7/05—Revision 0: Initial Version
umw. BDTI C. com/ADI

SPECIFICATIONS

DUAL SUPPLY

$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-15 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 1.

ADG1211/ADG1212/ADG1213

${ }^{1}$ Temperature range for Y version is $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design, not subject to production test.

umw. BDTI C. com/ADI

SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 2.

Parameter	$25^{\circ} \mathrm{C}$	$\begin{aligned} & \text { Y Version }{ }^{1} \\ & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance (Ron) On Resistance Match Between Channels (Δ Ron) On Resistance Flatness (Rflat(on)	$\begin{aligned} & 300 \\ & 475 \\ & 4.5 \\ & 12 \\ & 60 \end{aligned}$	567 26	0 V to V_{DD} 625 27	V Ω typ Ω max Ω typ Ω max Ω typ	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } 10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-1 \mathrm{~mA} ; \text { Figure } 20 \\ & \mathrm{~V}_{\mathrm{DD}}=10.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-1 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V} / 6 \mathrm{~V} / 9 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-1 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage, Is (Off) Drain Off Leakage, ID (Off) Channel On Leakage, $\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{s}}(\mathrm{On})$	$\begin{aligned} & \pm 0.02 \\ & \pm 0.1 \\ & \pm 0.02 \\ & \pm 0.1 \\ & \pm 0.02 \\ & \pm 0.1 \end{aligned}$	$\begin{aligned} & \pm 0.6 \\ & \pm 0.6 \\ & \pm 0.6 \end{aligned}$	$\begin{aligned} & \pm 1 \\ & \pm 1 \\ & \pm 1 \end{aligned}$	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & V_{D D}=13.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V} / 1 \mathrm{~V} \text {; Figure } 21 \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V} / 1 \mathrm{~V} \text {; Figure } 21 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} \text { or } 10 \mathrm{~V} \text {; Figure } 22 \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathrm{INH}}$ Input Low Voltage, VINL Input Current, I_{NL} or $\mathrm{I}_{\mathrm{INH}}$ Digital Input Capacitance, $\mathrm{CIN}_{\mathrm{IN}}$	$\underbrace{0.001}_{3}$		$\begin{gathered} 2.0 \\ 0.8 \\ \pm 0.1 \end{gathered}$	V min V max $\mu \mathrm{A}$ typ μA max pF typ	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{INL}} \text { or } \mathrm{V}_{\mathrm{INH}}$
DYNAMIC CHARACTERISTICS ${ }^{2}$ ton toff Break-Before-Make Time Delay, t_{D} (ADG1213 Only) Charge Injection Off Isolation Channel-to-Channel Crosstalk -3 dB Bandwidth C_{s} (Off) C_{D} (Off) $C_{D}, C_{S}(O n)$	$\begin{aligned} & 120 \\ & 155 \\ & 45 \\ & 65 \\ & 50 \\ & \\ & 0 \\ & 80 \\ & 90 \\ & 900 \\ & 1.2 \\ & 1.4 \\ & 1.3 \\ & 1.5 \\ & 3.2 \\ & 3.9 \\ & \hline \end{aligned}$	$\begin{aligned} & 190 \\ & 75 \end{aligned}$	225 85 10	ns typ ns max ns typ ns max ns typ ns min pC typ dB typ dB typ MHz typ pF typ pF max pF typ pF max pF typ pF max	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=8 \mathrm{~V} ; \text { Figure } 23 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=8 \mathrm{~V} ; \text { Figure } 23 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=8 \mathrm{~V} ; \text { Figure } 24 \\ & \mathrm{~V}_{\mathrm{S}}=6 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} ; \text { Figure } 25 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ; \text { Figure } 26 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text {; Figure } 27 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} ; \text { Figure } 28 \\ & \mathrm{~V}_{\mathrm{S}}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \end{aligned}$
POWER REQUIREMENTS Ido IDD	0.001 220		$\begin{aligned} & 1.0 \\ & 320 \end{aligned}$	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=13.2 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{DD}} \\ & \\ & \text { Digital inputs }=5 \mathrm{~V} \end{aligned}$

[^0]
ADG1211/ADG1212/ADG1213

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 3.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 2. TSSOP Pin Configuration

ADG1211/ADG1212/ADG1213

Figure 3. LFCSP Pin Configuration

Table 6. Pin Function Descriptions

Pin No.			
TSSOP	LFCSP	Mnemonic	Description
1	15	IN1	Logic Control Input.
2	16	D1	Drain Terminal. Can be an input or output.
3	1	S1	Source Terminal. Can be an input or output.
4	2	VSS	Most Negative Power Supply Potential.
5	3	GND	Ground (0 V) Reference.
6	4	S4	Source Terminal. Can be an input or output.
7	5	D4	Drain Terminal. Can be an input or output.
8	6	IN4	Logic Control Input.
9	7	IN3	Logic Control Input.
10	8	D3	Drain Terminal. Can be an input or output.
11	9	S3	Source Terminal. Can be an input or output.
12	10	NC	No Connection.
13	11	VDD	Most Positive Power Supply Potential.
14	12	S2	Source Terminal. Can be an input or output.
15	13	D2	Drain Terminal. Can be an input or output.
16	14	IN2	Logic Control Input.

ADG1211/ADG1212/ADG1213

TERMINOLOGY

I_{DD}
The positive supply current.
Iss
The negative supply current.
$\mathbf{V}_{\mathrm{D}}\left(\mathrm{V}_{\mathrm{s}}\right)$
The analog voltage on Terminals D and S.
Ron
The ohmic resistance between D and S .
$\mathbf{R}_{\text {flat(on) }}$
Flatness is defined as the difference between the maximum and minimum value of on resistance, as measured over the specified analog signal range.
I_{s} (Off)
The source leakage current with the switch off.
I_{D} (Off)
The drain leakage current with the switch off.

$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{s}}(\mathbf{O n})$

The channel leakage current with the switch on.
$\mathbf{V}_{\mathrm{INL}}$
The maximum input voltage for Logid 0 .
$\mathrm{V}_{\text {INH }}$
The minimum input voltage for Logic 1.
$\mathrm{I}_{\text {INL }}\left(\mathrm{I}_{\text {INH }}\right)$
The input current of the digital input.
C_{s} (Off)
The off switch source capacitance, measured with reference to ground.
C_{D} (Off)
The off switch drain capacitance, measured with reference to ground.

$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{s}}$ (On)

The on switch capacitance, measured with reference to ground.
Cin
The digital input capacitance.
ton
The delay between applying the digital control input and the output switching on. See Figure 23.
toff
The delay between applying the digital control input and the output switching off. See Figure 23.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

Off Isolation

A measure of unwanted signal coupling through an off switch.

Crosstalk

A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

Bandwidth

The frequency at which the output is attenuated by 3 dB .

On Response

The frequency response of the on switch.

Insertion Loss

The loss due to the on resistance of the switch.
THD + N
The ratio of the harmonic amplitude plus noise of the signal to the fundamental.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 4. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Dual Supply

Figure 5. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Dual Supply

Figure 6. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Single Supply

Figure 7. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, Dual Supply

Figure 8. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, Single Supply

Figure 9. Leakage Currents as a Function of Temperature, Dual Supply

Figure 10. Leakage Currents as a Function of Temperature, Single Supply

Figure 11. IDD vs. Logic Level

Figure 12. Charge Injection vs. Source Voltage

Figure 13. $T_{\text {ON }} / T_{\text {off }}$ Times vs. Temperature

Figure 14. Off Isolation vs. Frequency

Figure 15. Crosstalk vs. Frequency

Figure 16. On Response vs. Frequency

Figure 17. $T H D+N$ vs. Frequency

Figure 18. Capacitance vs. Source Voltage, Dual Supply

Figure 19. Capacitance vs. Source Voltage, Single Supply

ADG1211/ADG1212/ADG1213

TEST CIRCUITS

Figure 20. Test Circuit 1—On Resistance

Figure 21. Test Circuit 2—Off Leakage

Figure 22. Test Circuit 3—On Leakage

Figure 23. Test Circuit 4—Switching Times

Figure 24. Test Circuit 5—Break-Before-Make Time Delay

Figure 25. Test Circuit 6—Charge Injection

Figure 26. Test Circuit 7—Off Isolation

Figure 27. Test Circuit 8—Channel-to-Channel Crosstalk

Figure 28. Test Circuit 9—Bandwidth

Figure 29. Test Circuit 10—THD + Noise

ADG1211/ADG1212/ADG1213

OUTLINE DIMENSIONS

Figure 30. 16-Lead Thin Shrink Small Outline Package [TSSOP] (RU-16)
Dimensions shown in millimeters

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
ADG1211YRUZ ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Thin Shrink Small Outline Package (TSSOP)	RU-16
ADG1211YRUZ-REEL ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Thin Shrink Small Outline Package (TSSOP)	RU-16
ADG1211YRUZ-REEL71	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Thin Shrink Small Outline Package (TSSOP)	RU-16
ADG1211YCPZ-500RL71	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Lead Frame Chip Scale Package (LFCSP_VQ)	CP-16-3
ADG1211YCPZ-REEL71	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Lead Frame Chip Scale Package (LFCSP_VQ)	CP-16-3
ADG1212YRUZ ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Thin Shrink Small Outline Package (TSSOP)	RU-16
ADG1212YRUZ-REEL ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Thin Shrink Small Outline Package (TSSOP)	RU-16
ADG1212YRUZ-REEL71	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Thin Shrink Small Outline Package (TSSOP)	RU-16
ADG1212YCPZ-500RL7 ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Lead Frame Chip Scale Package (LFCSP_VQ)	CP-16-3
ADG1212YCPZ-REEL71	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Lead Frame Chip Scale Package (LFCSP_VQ)	CP-16-3
ADG1213YRUZ ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Thin Shrink Small Outline Package (TSSOP)	RU-16
ADG1213YRUZ-REEL ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Thin Shrink Small Outline Package (TSSOP)	RU-16
ADG1213YRUZ-REEL71	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Thin Shrink Small Outline Package (TSSOP)	RU-16
ADG1213YCPZ-500RL71	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Lead Frame Chip Scale Package (LFCSP_VQ)	CP-16-3
ADG1213YCPZ-REEL71	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Lead Frame Chip Scale Package (LFCSP_VQ)	CP-16-3

${ }^{1} \mathrm{Z}=\mathrm{Pb}$-free part.

uww. BDTI C. com/ADI

ADG1211/ADG1212/ADG1213

NOTES

www. BDTI C. com/ADI

[^0]: ${ }^{1}$ Temperature range for Y version is $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
 ${ }^{2}$ Guaranteed by design, not subject to production test.

