FEATURES

1.5 Ω on resistance 0.3 Ω on-resistance flatness 0.1 Ω on-resistance match between channels Continuous current per channel LFCSP package: 250 mA TSSOP package: 190 mA Fully specified at +12 V, ±15 V, and ±5 V No V_L supply required 3 V logic-compatible inputs Rail-to-rail operation 16-lead TSSOP and 16-lead, 4 mm × 4 mm LFCSP Oualified for automotive applications

APPLICATIONS

Automated test equipment Data acquisition systems Battery-powered systems Sample-and-hold systems Audio signal routing Video signal routing Communications systems Relay replacement

GENERAL DESCRIPTION

The ADG1411/ADG1412/ADG1413 are monolithic complementary metal-oxide semiconductor (CMOS) devices containing four independently selectable switches designed on an *i*CMOS* process. *i*CMOS (industrial CMOS) is a modular manufacturing process combining high voltage CMOS and bipolar technologies. It enables the development of a wide range of high performance analog ICs capable of 33 V operation in a footprint that no previous generation of high voltage parts has been able to achieve. Unlike analog ICs using conventional CMOS processes, *i*CMOS components can tolerate high supply voltages while providing increased performance, dramatically lower power consumption, and reduced package size.

The on-resistance profile is very flat over the full analog input range, ensuring excellent linearity and low distortion when switching signals.

*i*CMOS construction ensures ultralow power dissipation, making the parts ideally suited for portable and battery-powered instruments.

The ADG1411/ADG1412/ADG1413 contain four independent single-pole/single-throw (SPST) switches. The ADG1411 and

FUNCTIONAL BLOCK DIAGRAM

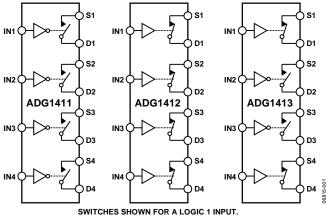


Figure 1.

ADG1412 differ only in that the digital control logic is inverted. The ADG1411 switches are turned on with Logic 0 on the appropriate control input, whereas the ADG1412 switches are turned on with Logic 1. The ADG1413 has two switches with digital control logic similar to that of the ADG1411; the logic is inverted on the other two switches. Each switch conducts equally well in both directions when on and has an input signal range that extends to the supplies. In the off condition, signal levels up to the supplies are blocked.

The ADG1413 exhibits break-before-make switching action for use in multiplexer applications. Inherent in the design is low charge injection, which results in minimum transients when the digital inputs are switched.

PRODUCT HIGHLIGHTS

- 1. 2.6 Ω maximum on resistance over temperature.
- 2. Minimum distortion.
- 3. Ultralow power dissipation: $<0.03 \mu$ W.
- 4. 16-lead TSSOP and 16-lead, 4 mm × 4 mm LFCSP packages.

TABLE OF CONTENTS

Features	1
Applications	1
Functional Block Diagram	1
General Description	1
Product Highlights	1
Revision History	2
Specifications	3
±15 V Dual Supply	3
+12 V Single Supply	4
±5 V Dual Supply	5

REVISION HISTORY

3/11-Rev. A to Rev. B

Changes to Features Section	1
Changes to Table 5, Added Exposed Pad Notation	3
Updated Outline Dimensions	15
Changes to Ordering Guide	40
Added Automotive Products Section	40

3/09—Rev. 0 to Rev. A

Changes to Power Requirements, I_{DD} , Digital Inputs = 5 V	
Parameter, Table 1	3
Changes to Power Requirements, I_{DD} , Digital Inputs = 5 V	
Parameter Table 2	4

5/08—Revision 0: Initial Version

SPECIFICATIONS

±15 V DUAL SUPPLY

 $V_{_{DD}}$ = 15 V \pm 10%, $V_{_{SS}}$ = –15 V \pm 10%, GND = 0 V, unless otherwise noted.

Table 1.

Parameter	25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			V_{DD} to V_{SS}	v	
On Resistance, R _{on}	1.5			Ωtyp	$V_{s} = \pm 10 V$, $I_{s} = -10 mA$; see Figure 23
	1.8	2.3	2.6	Ωmax	$V_{DD} = +13.5 \text{ V}, V_{SS} = -13.5 \text{ V}$
On-Resistance Match	0.1			Ωtyp	$V_{s} = \pm 10 \text{ V}$, $I_{s} = -10 \text{ mA}$
Between Channels, ΔR_{ON}					-3
	0.18	0.19	0.21	Ωmax	
On-Resistance Flatness, R _{FLAT(ON)}	0.3			Ωtyp	$V_{s} = \pm 10 V, I_{s} = -10 mA$
	0.36	0.4	0.45	Ωmax	
LEAKAGE CURRENTS					$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$
Source Off Leakage, I _s (Off)	±0.03			nA typ	
			. 12 5		$V_s = \pm 10 \text{ V}, V_D = \mp 10 \text{ V}; \text{ see Figure 24}$
	±0.55	±2	±12.5	nA max	
Drain Off Leakage, I_D (Off)	±0.03			nA typ	$V_s = \pm 10 \text{ V}, V_D = \mp 10 \text{ V};$ see Figure 24
	±0.55	±2	±12.5	nA max	
Channel On Leakage, I _D , I _s (On)	±0.15			nA typ	$V_s = V_D = \pm 10 V$; see Figure 25
	±2	±4	±30	nA max	
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, V _{INI}			0.8	V max	
Input Current, I _{INI} or I _{INH}	0.005		0.0		
input current, I _{INL} of I _{INH}	0.005		.01	µA typ	$V_{IN} = V_{GND}$ or V_{DD}
	2.5		±0.1	µA max	
Digital Input Capacitance, C _{IN}	3.5			pF typ	
DYNAMIC CHARACTERISTICS ¹					
t _{on}	100			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	150	170	190	ns max	$V_s = 10 V$; see Figure 30
t _{off}	90			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	120	140	160	ns max	$V_s = 10 V$; see Figure 30
Break-Before-Make Time Delay, $t_{\scriptscriptstyle D}$	25			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
(ADG1413 Only)					
			10	ns min	$V_{s1} = V_{s2} = 10 V$; see Figure 31
Charge Injection, Q _{INJ}	-20			pC typ	$V_s = 0 V$, $R_s = 0 \Omega$, $C_L = 1 nF$; see Figure 32
Off Isolation	-80			dB typ	$R_L = 50 \Omega$, $G_L = 5 pF$, $f = 100 kHz$; see Figure 26
Channel-to-Channel Crosstalk	-100			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 27
Total Harmonic Distortion + Noise	0.014			% typ	$R_L = 110 \Omega$, 15 V p-p, f = 20 Hz to 20 kHz;
					see Figure 29
–3 dB Bandwidth	170			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 28
Insertion Loss	-0.35			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 28
C _s (Off)	23			pF typ	$V_{s} = 0 V, f = 1 MHz$
C _D (Off)	23			pF typ	$V_{s} = 0 V, f = 1 MHz$
$C_{D'}C_{s}(On)$	116			pF typ	$V_{s} = 0 V, f = 1 MHz$
POWER REQUIREMENTS					$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$
I _{DD}	0.001			μA typ	Digital inputs = $0 \text{ V or } V_{DD}$
00			1	μA max	
l	220			μA typ	Digital inputs = 5 V
I _{DD}	220		380		
	0.001		500	µA max	Digital inputs = 0.1/ or 1/
I _{ss}	0.001		1	μA typ	Digital inputs = $0 \text{ V or } V_{DD}$
			1	μA max	
V _{DD} /V _{SS}			±4.5/±16.5	V min/V max	GND = 0 V

¹ Guaranteed by design; not subject to production test.

+12 V SINGLE SUPPLY

 $V_{\mbox{\tiny DD}}$ = 12 V \pm 10%, $V_{\mbox{\tiny SS}}$ = 0 V, GND = 0 V, unless otherwise noted.

Table 2.

Parameter	25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			0 V to V _{DD}	V	
On Resistance, R _{on}	2.8			Ωtyp	$V_s = 0 V$ to 10 V, $I_s = -10 mA$; see Figure 23
	3.5	4.3	4.8	Ωmax	$V_{DD} = 10.8 \text{ V}, V_{SS} = 0 \text{ V}$
On-Resistance Match	0.13			Ωtyp	$V_s = 0 V \text{ to } 10 V$, $I_s = -10 \text{ mA}$
Between Channels, ΔR_{ON}					
	0.21	0.23	0.25	Ωmax	
On-Resistance Flatness, R _{FLAT(ON)}	0.6			Ωtyp	$V_s = 0 V$ to 10 V, $I_s = -10 mA$
	1.1	1.2	1.3	Ωmax	
LEAKAGE CURRENTS					$V_{DD} = 10.8 \text{ V}, V_{SS} = 0 \text{ V}$
Source Off Leakage, I _s (Off)	±0.02			nA typ	$V_{s} = 1 \text{ V}/10 \text{ V}, V_{p} = 10 \text{ V}/0 \text{ V}; \text{ see Figure 24}$
	±0.55	±2	±12.5	nA max	
Drain Off Leakage, I _D (Off)	±0.02			nA typ	$V_{s} = 1 \text{ V}/10 \text{ V}, V_{D} = 10 \text{ V}/0 \text{ V}; \text{ see Figure 24}$
3, 5, 7	±0.55	±2	±12.5	nA max	
Channel On Leakage, I _D , I _S (On)	±0.15	-	12.5	nA typ	$V_{s} = V_{D} = 1 V/10 V$; see Figure 25
	±1.5	±4	±30	nA max	$v_{s} = v_{b} = 1$ v, to v, see Figure 25
DIGITAL INPUTS	±1.5	±4	±30	nA max	
			2.0	Martin	
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current, I _{INL} or I _{INH}	0.001			µA typ	$V_{IN} = V_{GND} \text{ or } V_{DD}$
			±0.1	µA max	
Digital Input Capacitance, C _{IN}	3.5			pF typ	
DYNAMIC CHARACTERISTICS ¹					
t _{on}	170			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	250	295	330	ns max	$V_s = 8 V$; see Figure 30
t _{OFF}	75			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	135	165	190	ns max	$V_s = 8 V$; see Figure 30
Break-Before-Make Time Delay, t _D (ADG1413 Only)	100			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
			40	ns min	$V_{s1} = V_{s2} = 8 V$; see Figure 31
Charge Injection, Q _{INJ}	30			pC typ	$V_s = 6 V$, $R_s = 0 \Omega$, $C_L = 1 nF$; see Figure 32
Off Isolation	-80			dB typ	$R_L = 50 \Omega, C_L = 5 pF, f = 100 kHz;$ see Figure 26
Channel-to-Channel Crosstalk	-100			dB typ	$R_{I} = 50 \Omega$, $C_{I} = 5 pF$, $f = 1 MHz$; see Figure 27
–3 dB Bandwidth	130			MHz typ	$R_1 = 50 \Omega$, $C_1 = 5 pF$; see Figure 28
Insertion Loss	-0.5			dB typ	$R_{I} = 50 \Omega$, $G = 5 pF$, $f = 1 MHz$; see Figure 28
C _s (Off)	38			pF typ	$V_{s} = 6 V, f = 1 MHz$
C _D (Off)	40			pF typ	$V_{s} = 6 V, f = 1 MHz$
$C_{\rm D}, C_{\rm s}$ (On)	104			pF typ	$V_{s} = 6 V, f = 1 MHz$
POWER REQUIREMENTS				. ,.	$V_{\rm DD} = 13.2 \rm V$
I _{DD}	0.001			μA typ	Digital inputs = 0 V or V_{DD}
-יטט	0.001		1	μA max	
	220			μA typ	Digital inputs = 5 V
	220		380	μA typ μA max	
	1	1	500	μητιμάλ	

¹ Guaranteed by design; not subject to production test.

±5 V DUAL SUPPLY

 $V_{_{DD}}$ = 5 V \pm 10%, $V_{_{SS}}$ = –5 V \pm 10%, GND = 0 V, unless otherwise noted.

Table 3.

Parameter	25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			V_{DD} to V_{SS}	V	
On Resistance, R _{on}	3.3			Ωtyp	$V_{s} = \pm 4.5 \text{ V}, I_{s} = -10 \text{ mA}; \text{ see Figure 23}$
	4	4.9	5.4	Ωmax	$V_{DD} = +4.5 V, V_{SS} = -4.5 V$
On-Resistance Match	0.13			Ωtyp	$V_s = \pm 4.5 \text{ V}, I_s = -10 \text{ mA}$
Between Channels, ΔR _{on}					
	0.22	0.23	0.25	Ωmax	
On-Resistance Flatness, R _{FLAT(ON)}	0.9			Ωtyp	$V_s = \pm 4.5 V; I_s = -10 mA$
	1.1	1.24	1.31	Ωmax	
LEAKAGE CURRENTS					$V_{DD} = +5.5 \text{ V}, V_{SS} = -5.5 \text{ V}$
Source Off Leakage, I _s (Off)	±0.03			nA typ	$V_s = \pm 4.5 \text{ V}, V_D = \mp 4.5 \text{ V}; \text{ see Figure 24}$
	±0.55	±2	±12.5	nA max	$v_{s} = \pm 1.5 v_{s} v_{b} = \pm 1.5 v_{s} = 5 v_{s} = 100 v_{s}$
Drain Off Leakage, I _D (Off)	±0.03	±2	±12.5	nA typ	
		_			$V_{\text{s}}{=}{\pm}4.5$ V, $V_{\text{D}}{=}{\mp}4.5$ V; see Figure 24
	±0.55	±2	±12.5	nA max	
Channel On Leakage, I_D , I_s (On)	±0.05			nA typ	$V_s = V_D = \pm 4.5 V$; see Figure 25
	±1.0	±4	±30	nA max	
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current, I _{INL} or I _{INH}	0.001			μA typ	$V_{IN} = V_{GND} \text{ or } V_{DD}$
			±0.1	μA max	
Digital Input Capacitance, C _{IN}	3.5			pF typ	
DYNAMIC CHARACTERISTICS ¹					
t _{on}	275			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	400	465	510	ns max	$V_s = 3 V$; see Figure 30
t _{OFF}	175			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	290	320	380	ns max	V _s = 3 V; see Figure 30
Break-Before-Make Time Delay, t _D (ADG1413 Only)	100			ns typ	$R_L = 300 \ \Omega, \ C_L = 35 \ pF$
			50	ns min	$V_{s_1} = V_{s_2} = 3 V$; see Figure 31
Charge Injection, Q _{INJ}	30			pC typ	$V_s = 0 V$, $R_s = 0 \Omega$, $C_1 = 1 nF$; see Figure 32
Off Isolation	-80			dB typ	$R_1 = 50 \Omega, C_1 = 5 \text{ pF}, f = 100 \text{ kHz}; \text{ see Figure 26}$
Channel-to-Channel Crosstalk	-100			dB typ	$R_1 = 50 \Omega$, $C_1 = 5 pF$, $f = 1 MHz$; see Figure 27
Total Harmonic Distortion + Noise	0.03			% typ	$R_L = 110 \Omega$, 5 V p-p, f = 20 Hz to 20 kHz; see Figure 29
–3 dB Bandwidth	130			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 28
Insertion Loss	-0.5			dB typ	$R_{\rm L} = 50 \ \Omega$, $C_{\rm L} = 5 \ pF$, $f = 1 \ MHz$; see Figure 28
C _s (Off)	32			pF typ	$V_s = 0 V_s f = 1 MHz$
$C_{\rm D}$ (Off)	33			pF typ	$V_s = 0 V$, $f = 1 MHz$
$C_{\rm D}, C_{\rm s}$ (On)	116			pF typ	$V_{s} = 0 V, f = 1 MHz$
POWER REQUIREMENTS	1			76. 27	$V_{DD} = +5.5 \text{ V}, V_{SS} = -5.5 \text{ V}$
I _{DD}	0.001			μA typ	$V_{DD} = 15.5 \text{ V}, V_{SS} = 5.5 \text{ V}$ Digital inputs = 0 V or V _{DD}
·UU	0.001		1.0	μA typ μA max	
l _{ss}	0.001			μA typ	Digital inputs = 0 V or V_{DD}
'55	0.001		1.0	μA typ μA max	
V M			±4.5/±16.5	V min/V max	GND = 0 V
V _{DD} /V _{SS}			± 4 .J/±10.5	v IIIII/ V IIIdX	

¹ Guaranteed by design; not subject to production test.

ABSOLUTE MAXIMUM RATINGS

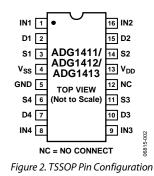
 $T_A = 25^{\circ}$ C, unless otherwise noted.

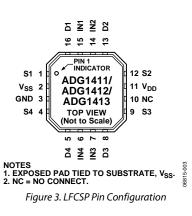
Table 4.

Parameter	Rating
V_{DD} to V_{SS}	35 V
V _{DD} to GND	–0.3 V to +25 V
V _{ss} to GND	+0.3 V to -25 V
Analog Inputs ¹	V _{ss} – 0.3 V to V _{DD} + 0.3 V or 30 mA, whichever occurs first
Digital Inputs ¹	GND – 0.3 V to V _{DD} + 0.3 V or 30 mA, whichever occurs first
Peak Current, Sx or Dx Pins	500 mA (pulsed at 1 ms, 10% duty cycle maximum)
Continuous Current per Channel at 25°C	
16-Lead TSSOP	190 mA
16-Lead LFCSP	250 mA
Continuous Current per Channel at 125°C	
16-Lead TSSOP	90 mA
16-Lead LFCSP	100 mA
Operating Temperature Range	
Automotive (Y Version)	–40°C to +125°C
Storage Temperature Range	−65°C to +150°C
Junction Temperature	150°C
16-Lead TSSOP, θ _A Thermal Impedance (Four-Layer Board)	112°C/W
16-Lead LFCSP, θ _A Thermal Impedance	30.4°C/W
Reflow Soldering Peak Temperature, Pb Free	260(+0/-5)°C

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Only one absolute maximum rating may be applied at any one time.


ESD CAUTION



ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

¹ Overvoltages at the INx, Sx, and Dx pins are clamped by internal diodes. Current should be limited to the maximum ratings given.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Table 5. Pin Function Descriptions

Pin No.				
TSSOP	LFCSP	Mnemonic	Description	
1	15	IN1	Logic Control Input.	
2	16	D1	Drain Terminal. This pin can be an input or output.	
3	1	S1	Source Terminal. This pin can be an input or output.	
4	2	V _{ss}	Most Negative Power Supply Potential.	
5	3	GND	Ground (0 V) Reference.	
6	4	S4	Source Terminal. This pin can be an input or output.	
7	5	D4	Drain Terminal. This pin can be an input or output.	
8	6	IN4	Logic Control Input.	
9	7	IN3	Logic Control Input.	
10	8	D3	Drain Terminal. This pin can be an input or output.	
11	9	S3	Source Terminal. This pin can be an input or output.	
12	10	NC	No Connection.	
13	11	V _{DD}	Most Positive Power Supply Potential.	
14	12	S2	Source Terminal. This pin can be an input or output.	
15	13	D2	Drain Terminal. This pin can be an input or output.	
16	14	IN2	Logic Control Input.	
N/A ¹	0	EP	Exposed Pad. Tie the exposed pad to the substrate, V _{ss} .	

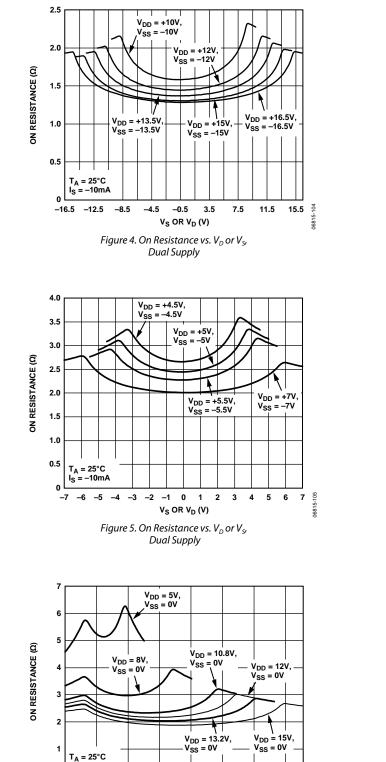

¹ N/A means not applicable.

Table 6. ADG1411/ADG1412 Truth Table

ADG1411 INx	ADG1412 INx	Switch Condition
0	1	On
_ 1	0	Off

Table 7. ADG1413 Truth Table

ADG1413 INx	S1, S4	S2, S3
0	Off	On
1	On	Off

 $I_S = -10mA$

2

4

6

8

V_S OR V_D (V)

Figure 6. On Resistance vs. V_D or V_s,

Single Supply

10

12

14

06815-106

0

0

TYPICAL PERFORMANCE CHARACTERISTICS

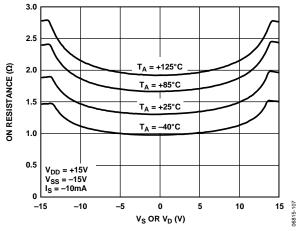


Figure 7. On Resistance vs. V_D or V_S for Different Temperatures, ±15 V Dual Supply

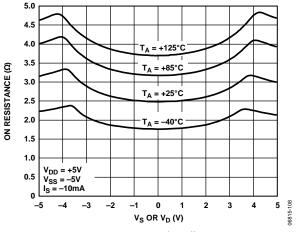


Figure 8. On Resistance vs. V_D or V_S for Different Temperatures, ± 5 V Dual Supply

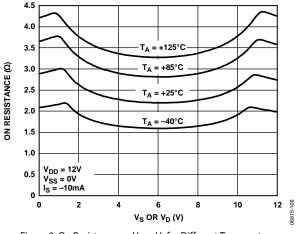
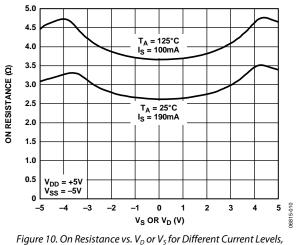
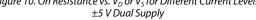




Figure 9. On Resistance vs. V_D or V_S for Different Temperatures, +12 V Single Supply

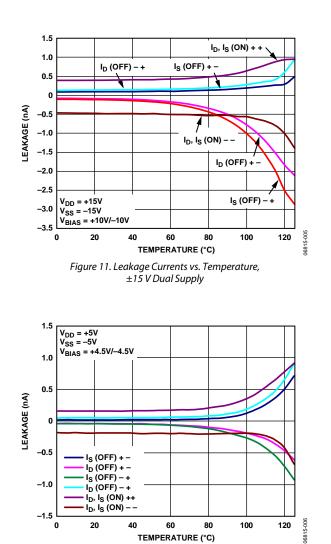
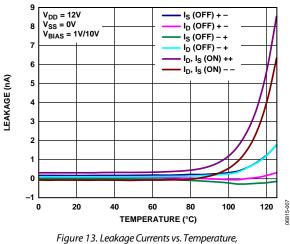
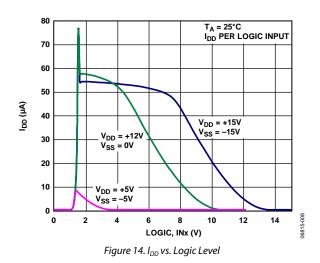




Figure 12. Leakage Currents vs. Temperature, ±5 V Dual Supply

+12 V Single Supply

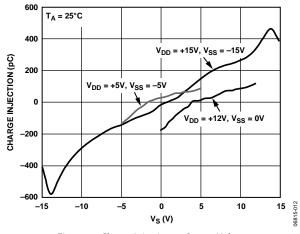
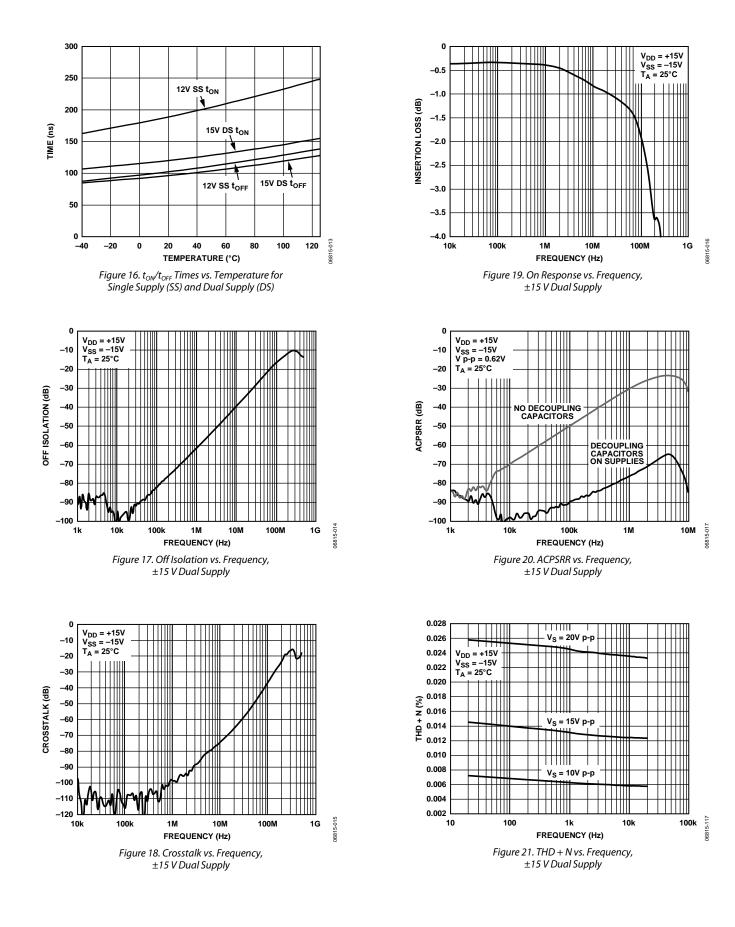
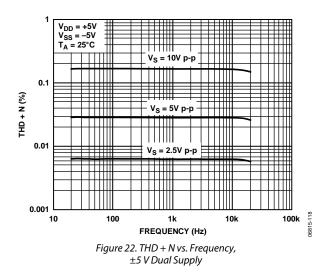




Figure 15. Charge Injection vs. Source Voltage

TERMINOLOGY

 \mathbf{I}_{DD}

The positive supply current.

Iss

The negative supply current.

 $\mathbf{V}_{\mathrm{D}}, \mathbf{V}_{\mathrm{S}}$ The analog voltage on Terminal D and Terminal S.

R_{on}

The ohmic resistance between Terminal D and Terminal S.

R_{FLAT(ON)}

Flatness is defined as the difference between the maximum and minimum value of on resistance measured over the specified analog signal range.

 I_s (Off)

The source leakage current with the switch off.

 $I^{}_{\rm D}$ (Off) The drain leakage current with the switch off.

 I_D , I_s (On) The channel leakage current with the switch on.

V_{INL}

The maximum input voltage for Logic 0.

 \mathbf{V}_{INH} The minimum input voltage for Logic 1.

 I_{INL} , I_{INH} The input current of the digital input when high or when low.

C_s (Off)

The off switch source capacitance, which is measured with reference to ground.

C_D (Off)

The off switch drain capacitance, which is measured with reference to ground.

 $C_{D}, C_{S}(On)$

The on switch capacitance, which is measured with reference to ground.

C_{IN}

The digital input capacitance.

t_{on}

The delay between applying the digital control input and the output switching on. See Figure 30.

t_{off}

The delay between applying the digital control input and the output switching off.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

Off Isolation

A measure of unwanted signal coupling through an off switch.

Crosstalk

A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

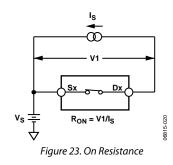
Bandwidth

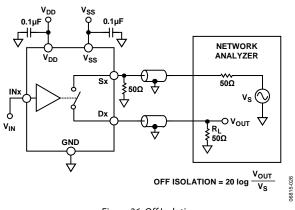
The frequency at which the output is attenuated by 3 dB.

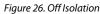
On Response The frequency response of the on switch.

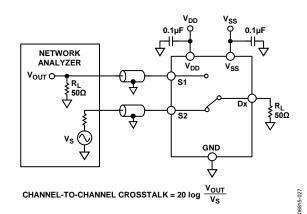
Insertion Loss

The loss due to the on resistance of the switch.

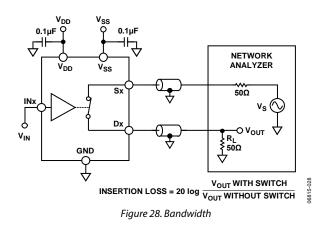

Total Harmonic Distortion + Noise (THD + N)

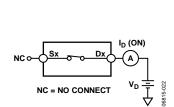

The ratio of the harmonic amplitude plus noise of the signal to the fundamental.

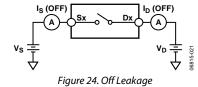

AC Power Supply Rejection Ratio (ACPSRR)


A measure of the part's ability to avoid coupling noise and spurious signals that appear on the supply voltage pin to the output of the switch. The dc voltage on the device is modulated by a sine wave of 0.62 V p-p. The ratio of the amplitude of the signal on the output to the amplitude of the modulation is the ACPSRR.

TEST CIRCUITS







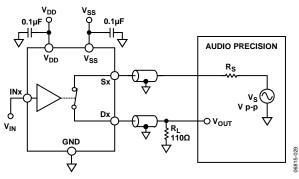
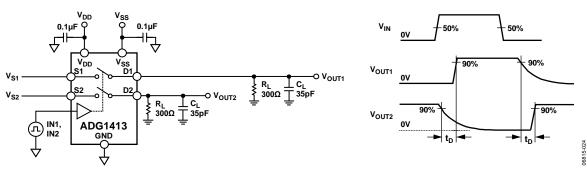



Figure 25. On Leakage



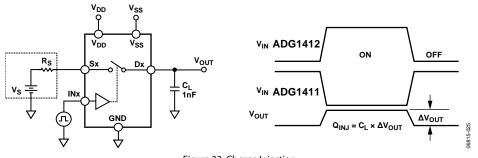
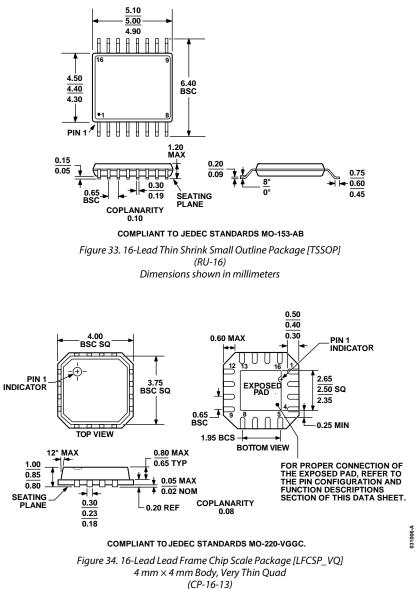



Figure 32. Charge Injection

OUTLINE DIMENSIONS

(CP-16-13) Dimensions shown in millimeters

ORDERING GUIDE

Model ^{1, 2}	Temperature Range	Package Description	Package Option
ADG1411YRUZ	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package (TSSOP)	RU-16
ADG1411YRUZ-REEL7	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package (TSSOP)	RU-16
ADG1411YCPZ-REEL	-40°C to +125°C	16-Lead Lead Frame Chip Scale Package (LFCSP_VQ)	CP-16-13
ADG1411YCPZ-REEL7	-40°C to +125°C	16-Lead Lead Frame Chip Scale Package (LFCSP_VQ)	CP-16-13
ADG1411WBCPZ-REEL	-40°C to +125°C	16-Lead Lead Frame Chip Scale Package (LFCSP_VQ)	CP-16-13
ADG1412YRUZ	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package (TSSOP)	RU-16
ADG1412YRUZ-REEL7	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package (TSSOP)	RU-16
ADG1412YCPZ-REEL	-40°C to +125°C	16-Lead Lead Frame Chip Scale Package (LFCSP_VQ)	CP-16-13
ADG1412YCPZ-REEL7	-40°C to +125°C	16-Lead Lead Frame Chip Scale Package (LFCSP_VQ)	CP-16-13
ADG1413YRUZ	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package (TSSOP)	RU-16
ADG1413YRUZ-REEL7	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package (TSSOP)	RU-16
ADG1413YCPZ-REEL	-40°C to +125°C	16-Lead Lead Frame Chip Scale Package (LFCSP_VQ)	CP-16-13
ADG1413YCPZ-REEL7	-40°C to +125°C	16-Lead Lead Frame Chip Scale Package (LFCSP_VQ)	CP-16-13

¹ Z = RoHS Compliant Part.

 2 W = qualified for automotive applications.

AUTOMOTIVE PRODUCTS

The ADG1411W model is available with controlled manufacturing to support the quality and reliability requirements of automotive applications. Note that this automotive model may have specifications that differ from the commercial models; therefore, designers should review the Specifications section of this data sheet carefully. Only the automotive grade product shown is available for use in automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to obtain the specific Automotive Reliability reports for this model.

©2008–2011 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D06815-0-3/11(B)

www.BDTIC.com/ADI

www.analog.com