FEATURES

44 V supply maximum ratings
$V_{S S}$ to $V_{D D}$ analog signal range
Low on resistance ($<70 \Omega$)
Low $\Delta R_{\text {on }}(9 \Omega$ max)
Low Ros match ($\mathbf{3} \Omega$ max)
Low power dissipation
Fast switching times
$t_{\text {on }}<110 \mathrm{~ns}$
toff $<\mathbf{6 0}$ ns
Low leakage currents (3 nA max)
Low charge injection (6 pC max)
Break-before-make switching action
Latch-up proof A grade
Plug-in upgrade for DG201A/ADG201A, DG202A/ADG202A, DG211/ADG211A
Plug-in replacement for DG441/DG442/DG444

APPLICATIONS

Audio and video switching
Automatic test equipment Precision data acquisition
Battery-powered systems
Sample-and-hold systems
Communication systems
GENERAL DESCRIPTION
The ADG441, ADG442, and ADG444 are monolithic CMOS devices that comprise of four independently selectable switches. They are designed on an enhanced LC^{2} MOS process that provides low power dissipation yet gives high switching speed and low on resistance.

The on resistance profile is very flat over the full analog input range, which ensures good linearity and low distortion when switching audio signals. High switching speed also makes the parts suitable for video signal switching. CMOS construction ensures ultralow power dissipation, making the parts ideally suited for portable and battery-powered instruments. The ADG441, ADG442, and ADG444 contain four independent SPST switches. Each switch of the ADG441 and ADG444 turns on when a logic low is applied to the appropriate control input. The ADG442 switches are turned on with logic high on the appropriate control input. The ADG441 and ADG444 switches

FUNCTIONAL BLOCK DIAGRAM

Figure 1.
differ in that the ADG444 requires a 5 V logic power supply that is applied to the V_{L} pin. The ADG441 and ADG442 do not have a V_{L} pin, the logic power supply is generated internally by an on-chip voltage generator.

Each switch conducts equally well in both directions when ON and has an input signal range that extends to the power supplies. In the OFF condition, signal levels up to the supplies are blocked. All switches exhibit break-before-make switching action for use in multiplexer applications. Inherent in the design is the low charge injection for minimum transients when switching the digital inputs.

PRODUCT HIGHLIGHTS

1. Extended signal range. The ADG441A/ADG442A/ ADG444A are fabricated on an enhanced LC 2 MOS, trenchisolated process, giving an increased signal range that extends to the supply rails.
2. Low power dissipation.
3. Low Ron.
4. Trench isolation guards against latch-up for A grade parts. A dielectric trench separates the P and N channel transistors thereby preventing latch-up even under severe overvoltage conditions.
5. Break-before-make switching. This prevents channel shorting when the switches are configured as a multiplexer.
6. Single-supply operation. For applications where the analog signal is unipolar, the ADG441/ADG442/ADG444 can be operated from a single-rail power supply. The parts are fully specified with a single 12 V power supply.
[^0]Fax: 781.461.3113 ©2005 Analog Devices, Inc. All rights reserved.

ADG441/ADG442/ADG444

TABLE OF CONTENTS

Specifications 3
Dual Supply 3
Single Supply 4
Absolute Maximum Ratings 5
ESD Caution 5
Pin Configurations and Function Descriptions 6
Typical Performance Characteristics 7

REVISION HISTORY

5/05-Data Sheet Changed from Rev. 0 to Rev. A

Changes to Format \qquad Universal Deleted CERDIP Package and T GradeUniversal Changes to Features and Product Highlights 1
Changes to Test Conditions in Table 2 4
Changes to Figure 11 8
Changes to Trench Isolation Section 12
Updated Outline Dimensions 13

4/94-Revision 0: Initial Version
Test Circuits 9
Terminology 11
Trench Isolation. 12
Outline Dimensions 13
Ordering Guide 14

SPECIFICATIONS

DUAL SUPPLY ${ }^{1}$

$\mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-15 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V} \pm 10 \%$ (ADG444), GND $=0 \mathrm{~V}$, unless otherwise noted.
Table 1.

Parameter	B Version		Unit	Test Conditions/Comments
	$+25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		
ANALOG SWITCH Analog Signal Range Ron Δ Ron Ron Match		$\begin{aligned} & \text { V SS to }^{\mathrm{VDD}} \\ & \\ & 85 \\ & 4 \\ & 9 \\ & 1 \\ & 3 \end{aligned}$	V Ω typ Ω max Ω typ Ω max Ω typ Ω max	$\begin{aligned} & \mathrm{V}_{\mathrm{D}}= \pm 8.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DD}}=+13.5 \mathrm{~V}, \mathrm{~V}_{S S}=-13.5 \mathrm{~V} \\ & -8.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{D}} \leq+8.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{D}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source OFF Leakage Is (OFF) Drain OFF Leakage lo (OFF) Channel ON Leakage $\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{s}}(\mathrm{ON})$	$\begin{aligned} & \pm 0.01 \\ & \pm 0.5 \\ & \pm 0.01 \\ & \pm 0.5 \\ & \pm 0.08 \\ & \pm 0.5 \end{aligned}$	± 3 ± 3 ± 3	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+16.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-16.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{D}}= \pm 15.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=\mp 15.5 \mathrm{~V} \end{aligned}$ See Figure 15 $V_{D}= \pm 15.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=\mp 15.5 \mathrm{~V}$ See Figure 15 $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \pm 15.5 \mathrm{~V}$ See Figure 16
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathrm{INH}}$ Input Low Voltage, VINL Input Current linl or linh		$\begin{aligned} & 2.4 \\ & 0.8 \\ & \pm 0.00001 \\ & \pm 0.5 \\ & \hline \end{aligned}$	V min $V \max$ $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\text { ViN }=V_{\text {INL or }} V_{\text {INH }}$
DYNAMIC CHARACTERISTICS² ton toff topen Charge Injection OFF Isolation Channel-to-Channel Crosstalk C_{s} (OFF) C_{D} (OFF) $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{ON})$	85 110 45 60 30 1 6 60 100 4 4 16	170 80	ns typ ns max ns typ ns max ns typ pC typ pC max dB typ dB typ pF typ pF typ pF typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V} ; \text { see Figure } 17 \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V} \text {; see Figure } 17 \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} ; \\ & \mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V}, \mathrm{~V} \mathrm{SS}=-15 \mathrm{~V} ; \text { see Figure } 18 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} ; \mathrm{f}=1 \mathrm{MHz} \text {; see Figure } 19 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} ; \mathrm{f}=1 \mathrm{MHz} ; \text { see Figure } 20 \\ & \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$
POWER REQUIREMENTS ldo ADG441/ADG442 ADG444 Iss IL (ADG444 Only)	$\begin{aligned} & 0.001 \\ & 1 \\ & 0.0001 \\ & 1 \\ & 0.001 \\ & 1 \end{aligned}$	80 2.5 2.5 2.5	$\mu \mathrm{A}$ max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max μA typ $\mu \mathrm{A}$ max	$\mathrm{V}_{\mathrm{DD}}=+16.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-16.5 \mathrm{~V}$ Digital Inputs $=0 \mathrm{~V}$ or 5 V $\mathrm{V}_{\mathrm{L}}=5.5 \mathrm{~V}$

[^1]
ADG441/ADG442/ADG444

SINGLE SUPPLY ${ }^{1}$

$\mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V} \pm 10 \%$ (ADG444), GND $=0 \mathrm{~V}$, unless otherwise noted.
Table 2.

[^2]
ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
Table 3.

Parameter	Rating
$\mathrm{V}_{\text {D }}$ to $\mathrm{V}_{S S}$	44 V
VDD to GND	-0.3 V to +25 V
$\mathrm{V}_{\text {ss }}$ to GND	+0.3 V to -25V
V ${ }_{\text {to }}$ GND	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Analog, Digital Inputs	$\mathrm{V}_{S S}-2 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+2 \mathrm{~V}$ or 30 mA , Whichever Occurs First
Continuous Current, S or D	30 mA
Peak Current, S or D (Pulsed at 1 ms, 10\% Duty Cycle Max)	100 mA
Operating Temperature Range	
Industrial (B Version)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
Lead Temperature, Soldering (10 sec)	$300^{\circ} \mathrm{C}$
Plastic Package, Power Dissipation	470 mW
$\theta_{\mathrm{j},}$, Thermal Impedance	$177^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering (10 sec)	$260^{\circ} \mathrm{C}$
SOIC Package, Power Dissipation	600 mW
θ_{j}, Thermal Impedance	$77^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering	
Vapor Phase (60 sec)	$215^{\circ} \mathrm{C}$
Infrared (15 sec)	$220^{\circ} \mathrm{C}$
Stresses above those listed under Absolute Maximum Rat functional operation of the device at these or any other co implied. Exposure to absolute maximum rating condition rating may be applied at any one time.	may cause permanent damage to the device. This is a stress rating only; ditions above those listed in the operational sections of this specification is not for extended periods may affect device reliability. Only one absolute maximum

Table 4. Truth Table

ADG441/ADG444 IN	ADG442 IN	Switch Condition
0	1	ON
1	0	OFF

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

ADG441/ADG442/ADG444

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 2. ADG441/ADG442 (DIP/SOIC)

Figure 3. ADG444 (DIP/SOIC)

Table 5. ADG441/ADG442 Pin Function Descriptions

Pin No.	Mnemonic	Description
1, 8, 9, 16	IN1 to IN4	Logic Control Input.
2,7,10,15	D1 to D4	Drain Terminal. May be an input or output.
3,6,11,14	S1 to S4	Source Terminal. May be an input or output.
4	Vss	Most Negative Power Supply Potential in Dual Supplies. In single-supply applications, it may be connected to ground.
5	GND	Groūnd (0 V) Reference.
12	NC	No Connect.
13	$V_{D D}$	Most Positive Power Supply Potential.

Table 6. ADG444 Pin Function Descriptions

Pin No.	Mnemonic	Description
$1,8,9,16$	IN1 to IN4	Logic Control Input.
$2,7,10,15$	D1 to D4	Drain Terminal. May be an input or output. Source Terminal. May be an input or output. Most Negative Power Supply Potential in Dual Supplies. In single-supply applications, it may be connected to ground.
4	S1 to S4	Ground (0 V) Reference. 5
12	$\mathrm{~V}_{\mathrm{SS}}$	Logic Power Supply (5 V). 13

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 4. Ron as a Function of $V_{D}\left(V_{S}\right)$: Dual Supply

Figure 5. Ron as a Function of $V_{D}\left(V_{S}\right)$: Single Supply

Figure 6. Ron as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures

Figure 7. Leakage Currents as a Function of $V_{S}\left(V_{D}\right)$

Figure 8. Crosstalk and Off Isolation vs. Frequency

Figure 9. Ron as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures

ADG441/ADG442/ADG444

Figure 10. Leakage Currents as a Function of $V_{S}\left(V_{D}\right)$

Figure 11. Charge Injection vs. Source Voltage

Figure 12. Switching Time vs. Bipolar Supply

Figure 13. Switching Time vs. Single Supply

TEST CIRCUITS

Figure 14. On Resistance

Figure 15. Off Leakage

Figure 16. On Leakage

Figure 18. Charge Injection

ADG441/ADG442/ADG444

Figure 19. Off Isolation

CHANNEL-TO-CHANNEL CROSSTALK $=20 \times$ LOG $\left|\mathrm{V}_{\mathbf{S}} / \mathrm{V}_{\text {OUT }}\right|$
Figure 20. Channel-to-Channel Crosstalk
umw. BDTI C. com/ADI

ADG441/ADG442/ADG444

TERMINOLOGY

Ron
Ohmic resistance between D and S.

Ron Match

Difference between the Ron of any two channels.
I_{S} (OFF)
Source leakage current with the switch OFF.

I_{D} (OFF)

Drain leakage current with the switch OFF.

$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{s}}(\mathrm{ON})$

Channel leakage current with the switch ON.
$\mathbf{V}_{\mathrm{D}}\left(\mathrm{V}_{\mathrm{s}}\right)$
Analog voltage on Terminals D, S.
Cs (OFF)
OFF switch source capacitance.
C_{D} (OFF)
OFF switch drain capacitance.

ton

Delay between applying the digital control input and the output switching on.
toff
Delay between applying the digital control input and the output switching off.

topen

Break-before-make delay when switches are configured as a multiplexer.

Crosstalk

A measure of unwanted signal which is coupled through from one channel to another as a result of parasitic capacitance.

Off Isolation

A measure of unwanted signal coupling through an OFF switch.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{s}(\mathrm{ON})$

ON switch capacitance.
umw. BDTI C. com/ADI

ADG441/ADG442/ADG444

TRENCH ISOLATION

In the ADG441A, ADG442A, and ADG444A, an insulating oxide layer (trench) is placed between the NMOS and the PMOS transistors of each CMOS switch. Parasitic junctions, which occur between the transistors in junction isolated switches, are eliminated, and the result is a completely latch-up proof switch.

In junction isolation, the N and P wells of the PMOS and NMOS transistors form a diode that is reverse-biased under normal operation. However, during overvoltage conditions, this diode becomes forward-biased. A silicon-controlled rectifier (SCR) type circuit is formed by the two transistors causing a significant amplification of the current which, in turn, leads to latch-up. With trench isolation, this diode is removed, and the result is a latch-up proof switch.

Figure 21. Trench Isolation

> umw. BDTI C. com/ADI

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-095AC
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN

Figure 22. 16-Lead Plastic Dual In-Line Package [PDIP] (N -16)
Dimensions shown in inches and (millimeters)

Figure 23. 16-Lead Standard Small Outline Package [SOIC] (R-16)
Dimensions shown in millimeters and (inches)

ADG441/ADG442/ADG444

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
ADG441BN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Plastic Dual In-Line Package (PDIP)	N-16
ADG441BR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Standard Small Outline Package (SOIC)	R-16
ADG441BR-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Standard Small Outline Package (SOIC)	R-16
ADG441BRZ ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Standard Small Outline Package (SOIC)	R-16
ADG441BRZ-REEL ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Standard Small Outline Package (SOIC)	R-16
ADG441BCHIPS		DIE	
ADG441ABCHIPS ${ }^{2}$		DIE	
ADG441ABN ${ }^{2}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Plastic Dual In-Line Package (PDIP)	N-16
ADG441ABR ${ }^{2}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Standard Small Outline Package (SOIC)	R-16
ADG441ABR-REEL ${ }^{2}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Standard Small Outline Package (SOIC)	R-16
ADG441ABRZ-REEL ${ }^{1,2}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Standard Small Outline Package (SOIC)	R-16
ADG442BN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Plastic Dual In-Line Package (PDIP)	N-16
ADG442BR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Standard Small Outline Package (SOIC)	R-16
ADG442BR-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Standard Small Outline Package (SOIC)	R-16
ADG442BRZ ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Standard Small Outline Package (SOIC)	R-16
ADG442BRZ-REEL ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Standard Small Outline Package (SOIC)	R-16
ADG442ABN ${ }^{2}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Plastic Dual In-Line Package (PDIP)	N-16
ADG442ABR ${ }^{2}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Standard Small Outline Package (SOIC)	R-16
ADG442ABR-REEL ${ }^{2}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Standard Small Outline Package (SOIC)	R-16
ADG442ABRZ ${ }^{1,2}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Standard Small Outline Package (SOIC)	R-16
ADG442ABRZ-REEL ${ }^{1,2}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Standard Small Outline Package (SOIC)	R-16
ADG444BN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Plastic Dual In-Line Package (PD́IP)	N-16
ADG444BR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Standard Small Outline Package (SOIC)	R-16
ADG444BR-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Standard Small Outline Package (SOIC)	R-16
ADG444BRZ ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Standard Small Outline Package (SOIC)	R-16
ADG444BRZ-REEL ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Standard Small Outline Package (SOIC)	R-16
ADG444ABN ${ }^{2}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Plastic Dual In-Line Package (PDIP)	N-16
ADG444ABR ${ }^{2}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Standard Small Outline Package (SOIC)	R-16
ADG444ABR-REEL ${ }^{2}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Standard Small Outline Package (SOIC)	R-16
ADG444ABRZ ${ }^{1,2}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Standard Small Outline Package (SOIC)	R-16
ADG444ABRZ-REEL ${ }^{1,2}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Standard Small Outline Package (SOIC)	R-16

${ }^{1} \mathrm{Z}=\mathrm{Pb}$-free part.
${ }^{2} \mathrm{~A}=$ Trench isolated.

NOTES
www. BDTI C. com/ADI

ADG441/ADG442/ADG444

NOTES

wuw. BDTI C. com/ADI

[^0]: One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A
 Tel: 781.329.4700
 www.analog.com

[^1]: ${ }^{1}$ Temperature range is: B Version: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
 ${ }^{2}$ Guaranteed by design, not subject to production test.

[^2]: ${ }^{1}$ Temperature range is: B Version: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
 ${ }^{2}$ Guaranteed by design, not subject to production test.

