1 pC Charge Injection, 100 pA Leakage, CMOS $\pm 5 \mathrm{~V} /+5 \mathrm{~V} /+3$ V Quad SPST Switches

ADG611/ADG612/ADG613

FEATURES

1 pC Charge Injection
$\pm 2.7 \mathrm{~V}$ to $\pm 5.5 \mathrm{~V}$ Dual Supply
+2.7 V to +5.5 V Single Supply
Automotive Temperature Range $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
100 pA Max @ $25^{\circ} \mathrm{C}$ Leakage Currents
85Ω On-Resistance
Rail-to-Rail Switching Operation
Fast Switching Times
16-Lead TSSOP Packages
Typical Power Consumption ($<0.1 \mu \mathrm{~W}$)
TTL/CMOS-Compatible Inputs

APPLICATIONS

Automatic Test Equipment
Data Acquisition Systems
Battery-Powered Systems
Communication Systems
Sample and Hold Systems
Audio Signal Routing
Relay Replacement
Avionics

GENERAL DESCRIPTION

unw. BDTI C.

The ADG611, ADG612, and ADG613 are monolithic CMOS devices containing four independently selectable switches. These switches offer ultralow charge injection of 1 pC over full input signal range and typical leakage currents of 10 pA at $25^{\circ} \mathrm{C}$.
They are fully specified for $\pm 5 \mathrm{~V},+5 \mathrm{~V}$, and +3 V supplies. They contain four independent single-pole/single-throw (SPST) switches. The ADG611 and ADG612 differ only in that the digital control logic is inverted. The ADG611 switches are turned on with a logic low on the appropriate control input, while a logic high is required to turn on the switches of the ADG612. The ADG613 contains two switches whose digital control logic is similar to the ADG611, while the logic is inverted on the other two switches.
Each switch conducts equally well in both directions when ON and has an input signal range that extends to the supplies. The ADG613 exhibits break-before-make switching action. The ADG611/ADG612/ADG613 are available in small 16-lead TSSOP packages.

PRODUCT HIGHLIGHTS

1. Ultralow Charge Injection (1 pC typically)
2. Dual $\pm 2.7 \mathrm{~V}$ to $\pm 5.5 \mathrm{~V}$ or Single +2.7 V to +5.5 V Operation.
3. Automotive Temperature Range, $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
4. Small 16-lead TSSOP package.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781/329-4700
Fax: 781/326-8703
© Analog Devices, Inc., 2002

ADG611/ADG612/ADG613-SPECIFICATIONS

DUAL SUPPL ${ }^{1}\left(V_{D D}=+5 \mathrm{~V} \pm 10 \%, V_{S S}=-5 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}\right.$, unless otherwise noted.)

Parameter	$25^{\circ} \mathrm{C}$	$\begin{aligned} & \text { Y Version } \\ & -40^{\circ} \mathrm{C} \\ & \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \\ & \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On-Resistance (R_{ON}) On-Resistance Match Between Channels ($\Delta \mathrm{R}_{\mathrm{ON}}$) On-Resistance Flatness ($\mathrm{R}_{\text {FLAT(ON) }}$)	$\begin{aligned} & 85 \\ & 115 \\ & 2 \\ & 4 \\ & 25 \\ & 40 \end{aligned}$	$\begin{aligned} & 140 \\ & 5.5 \\ & 55 \end{aligned}$	$\begin{aligned} & \text { to } \mathrm{V}_{\mathrm{DD}} \\ & 160 \\ & 6.5 \\ & 60 \end{aligned}$	V Ω typ Ω max Ω typ Ω max Ω typ Ω max	$\mathrm{V}_{\mathrm{S}}= \pm 3 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-1 \mathrm{~mA}$ Test Circuit 1 $\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 3 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-1 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 3 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-1 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source OFF Leakage IS (OFF) Drain OFF Leakage $I_{D}(O F F)$ Channel ON Leakage $\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{ON})$	$\begin{aligned} & \pm 0.01 \\ & \pm 0.1 \\ & \pm 0.01 \\ & \pm 0.1 \\ & \pm 0.01 \\ & \pm 0.1 \end{aligned}$	$\begin{aligned} & \pm 0.25 \\ & \pm 0.25 \\ & \pm 0.25 \end{aligned}$	$\begin{aligned} & \pm 2 \\ & \pm 2 \\ & \pm 6 \end{aligned}$	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{D}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=\mp 4.5 \mathrm{~V} ; \end{aligned}$ Test Circuit 2 $\mathrm{V}_{\mathrm{D}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=\mp 4.5 \mathrm{~V} ;$ Test Circuit 2 $\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}$, Test Circuit 3
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, $\mathrm{V}_{\text {INL }}$ Input Current $\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$ C_{IN}, Digital Input Capacitance	$\begin{aligned} & 0.005 \\ & 2 \end{aligned}$		$\begin{aligned} & 2.4 \\ & 0.8 \\ & \\ & \pm 0.1 \end{aligned}$	V min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS 2 ton $_{\mathrm{ON}}$ Break-Before-Make Time Delay, t_{D} Charge Injection Off Isolation Channel-to-Channel Crosstalk -3 dB Bandwidth $\mathrm{C}_{\mathrm{S}}(\mathrm{OFF})$ $\mathrm{C}_{\mathrm{D}}(\mathrm{OFF})$ $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{ON})$	$\begin{aligned} & 45 \\ & 65 \\ & 25 \\ & 40 \\ & 15 \\ & -0.5 \\ & -65 \\ & \\ & -90 \\ & 680 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	75 45	$\begin{gathered} 2 \\ 90 \\ 50 \\ 10 \end{gathered}$	ns typ ns max ns typ ns max ns typ ns min pC typ dB typ dB typ MHz typ pF typ pF typ pF typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ $\mathrm{V}_{\mathrm{S}}=3.0 \mathrm{~V}$, Test Circuit 4 $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ $\mathrm{V}_{\mathrm{S}}=3.0 \mathrm{~V}$, Test Circuit 4 $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ $\mathrm{V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=3.0 \mathrm{~V}$, Test Circuit 5 $\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega$, $\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$, Test Circuit 6 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$, $\mathrm{f}=10 \mathrm{MHz}$, Test Circuit 7 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$, $\mathrm{f}=10 \mathrm{MHz}$, Test Circuit 8 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$, Test Circuit 9 $\mathrm{f}=1 \mathrm{MHz}$ $\mathrm{f}=1 \mathrm{MHz}$ $\mathrm{f}=1 \mathrm{MHz}$
POWER REQUIREMENTS $\begin{gathered} \mathrm{I}_{\mathrm{DD}} \\ \mathrm{I}_{\mathrm{SS}} \end{gathered}$	$\begin{aligned} & 0.001 \\ & 0.001 \end{aligned}$		$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5.5 \mathrm{~V} \\ & \text { Digital Inputs }=0 \mathrm{~V} \text { or } 5.5 \mathrm{~V} \\ & \text { Digital Inputs }=0 \mathrm{~V} \text { or } 5.5 \mathrm{~V} \end{aligned}$

NOTES

${ }^{1}$ Temperature range is as follows. Y Version: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design, not subject to production test.
Specifications subject to change without notice.

SINGLE SUPPLY ${ }^{1}{ }_{V_{00}=5 V} \pm 10 \%, V_{S S}=0 V, G N D=0 V$, unless otherwise noted.)

Parameter	$25^{\circ} \mathrm{C}$	$\begin{aligned} & \text { Y Version } \\ & -40^{\circ} \mathrm{C} \\ & \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \\ & \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On-Resistance (R_{ON}) On-Resistance Match Between Channels ($\Delta \mathrm{R}_{\mathrm{ON}}$)	$\begin{aligned} & 210 \\ & 290 \\ & 3 \\ & 10 \end{aligned}$	$\begin{aligned} & 350 \\ & 12 \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}} \\ & 380 \\ & 13 \end{aligned}$	V Ω typ Ω max Ω typ Ω max	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=3.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-1 \mathrm{~mA} ; \\ & \text { Test Circuit } 1 \\ & \mathrm{~V}_{\mathrm{S}}=3.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-1 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source OFF Leakage IS (OFF) Drain OFF Leakage $\mathrm{I}_{\mathrm{D}}(\mathrm{OFF})$ Channel ON Leakage $\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{ON})$	$\begin{aligned} & \pm 0.01 \\ & \pm 0.1 \\ & \pm 0.01 \\ & \pm 0.1 \\ & \pm 0.01 \\ & \pm 0.1 \end{aligned}$	$\begin{aligned} & \pm 0.25 \\ & \pm 0.25 \\ & \pm 0.25 \end{aligned}$	$\begin{aligned} & \pm 2 \\ & \pm 2 \\ & \pm 6 \end{aligned}$	nA typ $n A \max$ nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=4.5 \mathrm{~V} / 1 \mathrm{~V} ; \\ & \text { Test Circuit } 2 \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=4.5 \mathrm{~V} / 1 \mathrm{~V} ; \\ & \text { Test Circuit } 2 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} \text { or } 4.5 \mathrm{~V} \text {, Test Circuit } 3 \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, $\mathrm{V}_{\text {INL }}$ Input Current $\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$ C_{IN}, Digital Input Capacitance ${ }^{2}$	0.005 2		$\begin{aligned} & 2.4 \\ & 0.8 \\ & \\ & \pm 0.1 \end{aligned}$	V min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS ${ }^{2}$ t_{ON} $\mathrm{t}_{\mathrm{OFF}}$ Break-Before-Make Time Delay, t_{D} Charge Injection Off Isolation Channel-to-Channel Crosstalk -3 dB Bandwidth C_{S} (OFF) C_{D} (OFF) $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{ON})$	70 100 25 40 25 1 -62 -90 680 5 5 5	130 45	150 50 10	ns typ ns max ns typ ns max ns typ ns min pC typ dB typ dB typ MHz typ pF typ pF typ pF typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=3.0 \mathrm{~V}, \text { Test Circuit } 4 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=3.0 \mathrm{~V}, \text { Test Circuit } 4 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=3.0 \mathrm{~V}, \text { Test Circuit } 5 \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} ; \\ & \text { Test Circuit } 6 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=10 \mathrm{MHz} \\ & \text { Test Circuit } 7^{\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=10 \mathrm{MHz}} \\ & \mathrm{Test} \mathrm{Circuit} 8 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \text { Test Circuit } 9 \\ & \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{f}=1 \mathrm{MHz} \\ & \hline \end{aligned}$
POWER REQUIREMENTS I_{DD}	0.001		1.0	$\mu \mathrm{A}$ typ $\mu \mathrm{A} \max$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V} \\ & \text { Digital Inputs }=0 \mathrm{~V} \text { or } 5.5 \mathrm{~V} \end{aligned}$

NOTES

${ }^{1}$ Temperature ranges are as follows. Y Version: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design, not subject to production test.
Specifications subject to change without notice.

ADG611/ADG612/ADG613-SPECIFICATIONS

SINGLE SUPPLY ${ }^{1}\left(V_{D D}=3 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{S S}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}\right.$, unless otherwise noted. $)$

Parameter	$25^{\circ} \mathrm{C}$	$\begin{aligned} & \text { Y Version } \\ & -40^{\circ} \mathrm{C} \\ & \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \\ & \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On-Resistance (R_{ON})	380	420	$\begin{aligned} & 0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}} \\ & 460 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \Omega \text { typ } \end{aligned}$	$\mathrm{V}_{\mathrm{S}}=1.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-1 \mathrm{~mA} ;$ Test Circuit 1
LEAKAGE CURRENTS Source OFF Leakage I_{S} (OFF) Drain OFF Leakage $\mathrm{I}_{\mathrm{D}}(\mathrm{OFF})$ Channel ON Leakage $\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{ON})$	$\begin{aligned} & \pm 0.01 \\ & \pm 0.1 \\ & \pm 0.01 \\ & \pm 0.1 \\ & \pm 0.01 \\ & \pm 0.1 \end{aligned}$	$\begin{aligned} & \pm 0.25 \\ & \pm 0.25 \\ & \pm 0.25 \end{aligned}$	$\begin{aligned} & \pm 2 \\ & \pm 2 \\ & \pm 6 \end{aligned}$	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 3 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=3 \mathrm{~V} / 1 \mathrm{~V} ; \end{aligned}$ Test Circuit 2 $\mathrm{V}_{\mathrm{S}}=1 \mathrm{~V} / 3 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=3 \mathrm{~V} / 1 \mathrm{~V} ;$ Test Circuit 2 $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V}$ or 3 V , Test Circuit 3
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, $\mathrm{V}_{\text {INL }}$ Input Current $\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$ C_{IN}, Digital Input Capacitance	$\begin{aligned} & 0.005 \\ & 2 \end{aligned}$		$\begin{aligned} & 2.0 \\ & 0.8 \\ & \\ & \pm 0.1 \end{aligned}$	V min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS ${ }^{2}$ t_{ON} $\mathrm{t}_{\mathrm{OFF}}$ Break-Before-Make Time Delay, t_{D} Charge Injection Off Isolation Channel-to-Channel Crosstalk -3 dB Bandwidth C_{S} (OFF) C_{D} (OFF) $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{ON})$	130185405550 ${ }^{180}$1.5 -62 -90 680 5 5 5	230 60	$\begin{aligned} & 260 \\ & 65 \\ & 10 \end{aligned}$	ns typ ns max ns typ ns max ns typ ns min pC typ dB typ dB typ MHz typ pF typ pF typ pF typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ $\mathrm{V}_{\mathrm{S}}=2 \mathrm{~V}$, Test Circuit 4 $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ $\mathrm{V}_{\mathrm{S}}=2 \mathrm{~V}$, Test Circuit 4 $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ $\mathrm{V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=2 \mathrm{~V}$, Test Circuit 5 $\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$; Test Circuit 6 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=10 \mathrm{MHz}$ Test Circuit 7 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=10 \mathrm{MHz}$ Test Circuit 8 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$, Test Circuit 9 $\mathrm{f}=1 \mathrm{MHz}$ $\mathrm{f}=1 \mathrm{MHz}$ $\mathrm{f}=1 \mathrm{MHz}$
POWER REQUIREMENTS I_{DD}	0.001		1.0	$\mu \mathrm{A}$ typ $\mu \mathrm{A} \max$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \\ & \text { Digital Inputs }=0 \mathrm{~V} \text { or } 3.3 \mathrm{~V} \end{aligned}$

NOTES
${ }^{1}$ Temperature ranges are as follows. Y Version: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design, not subject to production test.
Specifications subject to change without notice.

ADG611/ADG612/ADG613

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless	
V_{DD} to $\mathrm{V}_{\text {SS }}$	3 V
$V_{\text {DD }}$ to GND	-0.3 V to +6.5 V
$\mathrm{V}_{\text {SS }}$ to GND	+0.3 V to -6.5 V
Analog Inputs ${ }^{2}$	$\mathrm{V}_{\mathrm{SS}}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Digital Inputs ${ }^{2}$	GND - 0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$

Peak Current, S or D \qquad (Pulsed at $1 \mathrm{~ms}, 10 \%$ Duty Cycle max)
Continuous Current, S or D . 10 mA
3 V operation $85^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. 7.5 mA
Operating Temperature Range
Automotive (Y Version) $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Junction Temperature . $150^{\circ} \mathrm{C}$
16 -Lead TSSOP, θ_{JA} Thermal Impedance $150.4^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering
Vapor Phase (60 sec) . $215^{\circ} \mathrm{C}$
Infrared (15 sec) . $220^{\circ} \mathrm{C}$
NOTES
${ }^{1}$ Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute
${ }^{2}$ Overvoltages at IN, S, or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
ADG611YRU	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Thin Shrink Small Outline Package (TSSOP)	RU-16
ADG612YRU	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Thin Shrink Small Outline Package (TSSOP)	RU-16
ADG613YRU	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Thin Shrink Small Outline Package (TSSOP)	RU-16

Table I. ADG611/ADG612 Truth Table
PIN CONFIGURATIONS

ADG611 In	ADG612 In	Switch Condition	
0	1		
1	0	ON	

Table II. ADG613 Truth Table

Logic	Switch 1, 4	Switch 2, 3
0	OFF	ON
1	ON	OFF

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG611/ADG612/ADG613 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

TERMINOLOGY

V_{DD}	Most Positive Power Supply Potential
$\mathrm{V}_{\text {SS }}$	Most Negative Power Supply Potential
I_{DD}	Positive Supply Current
$\mathrm{I}_{\text {S }}$	Negative Supply Current
GND	Ground (0 V) Reference
S	Source Terminal. May be an input or output
D	Drain Terminal. May be an input or output
IN	Logic Control Input
$\mathrm{V}_{\mathrm{D}}\left(\mathrm{V}_{\mathrm{S}}\right)$	Analog Voltage on Terminals D, S
$\mathrm{R}_{\text {ON }}$	Ohmic Resistance between D and S
$\Delta \mathrm{R}_{\text {ON }}$	On Resistance match between any two channels, i.e., $\mathrm{R}_{\text {ONMAX }}-\mathrm{R}_{\text {ONMIN }}$.
$\mathrm{R}_{\text {FLAT(ON) }}$	Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal range.
$\mathrm{I}_{\mathrm{S}}(\mathrm{OFF})$	Source Leakage Current with the Switch "OFF"
I_{D} (OFF)	Drain Leakage Current with the Switch "OFF"
$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{ON})$	Channel Leakage Current with the Switch "ON"
$\mathrm{V}_{\text {INL }}$	Maximum Input Voltage for Logic "0"
$\mathrm{V}_{\text {INH }}$	Minimum Input Voltage for Logic "1"
$\mathrm{I}_{\mathrm{INL}}\left(\mathrm{I}_{\mathrm{INH}}\right)$	Input Current of the Digital Input.
C_{S} (OFF)	"OFF" Switch Source Capacitance. Measured with reference to ground.
$\mathrm{C}_{\mathrm{D}}(\mathrm{OFF})$	"OFF" Switch Drain Capacitance. Measured with reference to ground.
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{ON})$	"ON" Switch Capacitance. Measured with reference to ground.
$\mathrm{C}_{\text {IN }}$	Digital Input Capacitance
t_{ON}	Delay between applying the digital control input and the output switching on. See Test Circuit 4.
$\mathrm{t}_{\text {OFF }}$	Delay between applying the digital control input and the output switching off.
Charge Injection	A measure of the glitch impulse transferred from the digital input to the analog output during switching.
Off Isolation	A measure of unwanted signal coupling through an "OFF" switch.
Crosstalk	A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.
On Response	Frequency Response of the "ON" Switch
Insertion Loss	Loss Due to the ON Resistance of the Switch

Typical Performance Characteristics-ADG611/ADG612/ADG613

TPC 1. On Resistance vs. $V_{D}\left(V_{S}\right)$, Dual Supply

TPC 4. On Resistance vs. $V_{D}\left(V_{S}\right)$ for Different Temperatures, Single Supply

TPC 7. Charge Injection vs. Source Voltage

TPC 2. On Resistance vs. $V_{D}\left(V_{S}\right)$, Single Supply

TPC 3. On Resistance vs. $V_{D}\left(V_{S}\right)$ for Different Temperatures, Dual Supply

TPC 6. Leakage Currents vs. Temperature, Single Supply

TPC 9. On Response vs. Frequency

TPC 10. Off Isolation vs. Frequency

APPLICATIONS

Figure 1 illustrates a photodetector circuit with programmable gain. With the resistor values shown in the circuits, and using different combinations of switches, gains in the range of 2 to 16 can be achieved.

Figure Photodetegtor Circuit with Programmable Gain

TPC 11. Crosstalk vs. Frequency

Test Circuits

Test Circuit 1. On Resistance

Test Circuit 2. Off Leakage

Test Circuit 3. On Leakage

Test Circuit 5. Break-Before-Make Time Delay

Test Circuit 6. Charge Injection

Test Circuit 7. Off Isolation

Test Circuit 8. Channel-to-Channel Crosstalk

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

www. BDTI C. com/ADI

umw. BDTI C. com/ADI

