$2.5 \Omega, 1.8 \mathrm{~V}$ to $5.5 \mathrm{~V}, \pm 2.5 \mathrm{~V}$ Triple/Quad
SPDT Switches in Chip Scale Packages

ADG786/ADG788

FEATURES

1.8 V to 5.5 V Single Supply
± 2.5 V Dual Supply
2.5Ω On Resistance
0.5Ω On Resistance Flatness
100 pA Leakage Currents
19 ns Switching Times
Triple SPDT: ADG786
Quad SPDT: ADG788
20-Lead $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ Chip Scale Packages
Low Power Consumption
TTL/CMOS-Compatible Inputs
For Functionally-Equivalent Devices in 16-Lead TSSOP
Packages, See ADG733/ADG734

APPLICATIONS

Data Acquisition Systems
Communication Systems
Relay Replacement
Audio and Video Switching
Battery-Powered Systems

GENERAL DESCRIPTION

The AD G 786 and AD G 788 arelow/voltage, CM OS devices comprising three independently selectable SPDT (single pole, double throw) switches and four independently selectable SPDT switches respectively.
L ow power consumption and operating supply range of 1.8 V to 5.5 V and dual $\pm 2.5 \mathrm{~V}$ make the AD G 786 and AD G 788 ideal for battery powered, portable instruments and many other applications. All channels exhibit break-before-make switching action preventing momentary shorting when switching channels. An EN input on the ADG 786 is used to enable or disable the device. When disabled, all channels are switched OFF .
These multiplexers are designed on an enhanced submicron process that provides low power dissipation yet gives high switching speed, very low on resistance, high signal bandwidths and low leakage currents. On resistance is in the region of a few ohms, is closely matched between switches and very flat over the full signal range. T hese parts can operate equally well in either direction and have an input signal range which extends to the supplies.
T he AD G 786 and AD G 788 are available in small 20-lead chip scale packages.

REV. 0

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781/329-4700
www.analog.com
Fax: 781/326-8703
© Analog Devices, Inc., 2001

NOTES

${ }^{1}$ T emperature range is as follows: B Version: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design, not subject to production test.
Specifications subject to change without notice.

SPECIFICATIONS ${ }^{1}$

$\left(V_{D D}=3 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{S S}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}\right.$, unless otherwise noted.)

Parameter	B Version		Unit	Test Conditions/Comments
		$\begin{aligned} & -40^{\circ} \mathrm{C} \\ & \text { to }+85^{\circ} \mathrm{C} \end{aligned}$		
ANALOG SWITCH Analog Signal Range On Resistance (Ron) On-Resistance M atch between C hannels ($\Delta \mathrm{R}_{\mathrm{ON}}$) On-Resistance Flatness ($\mathrm{R}_{\text {flat(ON) }}$)	$\begin{aligned} & 6 \\ & 11 \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}} \\ & 12 \\ & 0.1 \\ & 0.5 \\ & 3 \end{aligned}$	Ω typ Ω max Ω typ Ω max Ω typ	$V_{S}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, I_{\mathrm{DS}}=10 \mathrm{~mA} ;$ T est Circuit 1 $\begin{aligned} & V_{S}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{DS}}=10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{DS}}=10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source OFF Leakage IS (OFF) Channel ON Leakage $I_{D}, I_{S}(O N)$	$\begin{aligned} & \pm 0.01 \\ & \pm 0.1 \\ & \pm 0.01 \\ & \pm 0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 0.3 \\ & \pm 0.5 \end{aligned}$	nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{D D}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{S}=3 \mathrm{~V} / 1 \mathrm{~V}, \mathrm{~V}_{D}=1 \mathrm{~V} / 3 \mathrm{~V} \text {; } \\ & \mathrm{T} \text { est Circuit } 2 \\ & \mathrm{~V}_{S}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} \text { or } 3 \mathrm{~V} \text {; } \\ & \text { T est Circuit } 3 \\ & \hline \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, VINL Input Current $\mathrm{I}_{\text {INL }}$ or I INH $\mathrm{C}_{\text {IN }}$, Digital Input C apacitance	$\begin{aligned} & 0.005 \\ & 4 \end{aligned}$	$\begin{gathered} 2.0 \\ 0.8 \\ \pm 0.1 \end{gathered}$	\vee min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS ${ }^{2}$ $t_{0 N}$ $t_{\text {OFF }}$ ADG786 $t_{0 N}(\overline{\mathrm{EN}})$ $\mathrm{t}_{\mathrm{OFF}}(\overline{\mathrm{EN}})$ Break-B efore-M ake T ime D elay, t_{D} Charge Injection Off Isolation Channel-to-C hannel C rosstalk $\begin{aligned} & -3 \mathrm{~dB} \text { Bandwidth } \\ & \mathrm{C}_{\mathrm{S}}(\mathrm{OFF}) \\ & \mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{ON}) \end{aligned}$	28 9 29 9 22 ± 3 -72 -67 160 11 34	$\begin{aligned} & 55 \\ & 16 \\ & 60 \\ & 16 \\ & 1 \end{aligned}$	ns typ nsmax ns typ ns max ns typ ns max ns typ ns max ns typ ns min pC typ dB typ dB typ MHz typ pF typ pF typ	$R_{L}=300 \Omega, C_{L}=35 \mathrm{pF} ;$ $\mathrm{V}_{\text {SIA }}=2 \mathrm{~V}, \mathrm{~V}_{\text {S1B }}=0 \mathrm{~V}$, T est C ircuit 4 $R_{L}=300 \Omega, C_{L}=35 \mathrm{pF}$; $V_{S}=2 \mathrm{~V}$, T est Circuit 4 $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$; $\mathrm{V}_{\mathrm{S}}=2 \mathrm{~V}$, T est Circuit 5 $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$; $\mathrm{V}_{\mathrm{S}}=2 \mathrm{~V}$, T est Circuit 5 $R_{L}=300 \Omega, C_{L}=35 \mathrm{pF}$; $\mathrm{V}_{\mathrm{S}}=2 \mathrm{~V}$, Test Circuit 6 $\mathrm{V}_{\mathrm{S}}=1 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$; T est Circuit 7 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$; Test Circuit 8 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$; Test Circuit 9 $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \text { T est C ircuit } 10 \\ & \mathrm{f}=1 \mathrm{M} \mathrm{~Hz} \\ & \mathrm{f}=1 \mathrm{M} \mathrm{~Hz} \end{aligned}$
POWER REQUIREMENTS $I_{D D}$	0.001	1.0	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\begin{aligned} & \mathrm{V}_{\text {DD }}=3.3 \mathrm{~V} \\ & \text { Digital Inputs }=0 \mathrm{~V} \text { or } 3.3 \mathrm{~V} \end{aligned}$

NOTES

${ }^{1} \mathrm{~T}$ emperature ranges are as follows: B Version: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design, not subject to production test.
Specifications subject to change without notice.

DUAL SUPPLY ($\mathrm{V}_{\mathrm{DD}}=+2.5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{S S}=-2.5 \mathrm{~V} \pm 10 \%$, $\mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.)

NOTES

${ }^{1} \mathrm{~T}$ emperature range is as follows: B Version: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
${ }^{2} G$ uaranteed by design, not subject to production test.
Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS ${ }^{\mathbf{1}}$ ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)	
$V_{\text {DD }}$ to $V_{\text {SS }}$	V
$V_{D D}$ to GND	-0.3 V to +7 V
$\mathrm{V}_{\text {SS }}$ to GND	+0.3 V to -3.5 V
Analog Inputs ${ }^{2}$	$. \mathrm{V}_{\mathrm{SS}}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA , W hichever Occurs F irst
Digital Inputs ${ }^{2}$	$\ldots-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA , W hichever Occurs First
Peak Current, S or D	100 mA
	at $1 \mathrm{~ms}, 10 \%$ Duty Cycle max)
C ontinuous C urrent, S or D	30 mA
Operating T emperature R ange	
Industrial (A, B Versions)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

ABSOLUTE MAXIMUM RATINGS ${ }^{\mathbf{1}}$

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
$V_{D D}$ to $V_{S S}$... . . . 7 V
$V_{D D}$ to GND -0.3 V to +7 V
$\mathrm{V}_{\text {SS }}$ to GND . +0.3 V to 3.5 V
Analog Inputs ${ }^{2} \ldots V_{S S}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA , Whichever Occurs F irst
Digital Inputs ${ }^{2} \ldots$. 30 mA , Whichever Occurs F irst (Pulsed at $1 \mathrm{~ms}, 10 \%$ Duty Cycle max)

Storage Temperature R ange $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Junction Temperature . $150^{\circ} \mathrm{C}$ 20 Lead CSP, $\theta_{J A}$ Thermal Impedance $32^{\circ} \mathrm{C} / \mathrm{W}$ Lead Temperature, Soldering (10 sec) $300^{\circ} \mathrm{C}$
IR Reflow, Peak Temperature $220^{\circ} \mathrm{C}$
NOTES
${ }^{1}$ Stresses above those listed under Absolute M aximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.
${ }^{2}$ Overvoltages at A, EN , IN , S, or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG786/ADG788 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. T herefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

Model	WWemperatureRange	PackageDescription	Package Option
ADG 786BCP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Chip Scale Package (C SP)	CP-20
ADG 788BCP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Chip Scale Package (CSP)	CP-20

PIN CONFIGURATIONS

Table I. ADG786Truth Table

A2	A1	$\mathbf{A 0}$	$\overline{\mathbf{E N}}$	ON Switch
X	X	X	1	N one
0	0	0	0	D 1-S1A, D 2-S2A, D 3-S3A
0	0	1	0	D 1-S1B, D 2-S2A, D 3-S3A
0	1	0	0	D 1-S1A, D 2-S2B, D 3-S3A
0	1	1	0	D 1-S1B, D 2-S2B, D 3-S3A
1	0	0	0	D 1-S1A, D 2-S2A, D 3-S3B
1	0	1	0	D 1-S1B, D 2-S2A, D 3-S3B
1	1	0	0	D 1-S1A, D 2-S2B, D 3-S3B
1	1	1	0	D 1-S1B, D 2-S2B, D 3-S3B

Table II. ADG788Truth Table

Logic	Switch A	Switch B
0	OFF	ON
1	ON	OFF

TERMINOLOGY

$\overline{V_{D D}}$	M ost Positive Power Supply Potential
$\mathrm{V}_{\text {SS }}$	M ost N egative Power Supply in a Dual Supply Application. In single supply applications, this should be tied to ground close to the device.
$I_{\text {D }}$	Positive Supply Current
$\mathrm{I}_{\text {SS }}$	N egative Supply C urrent
GND	Ground (0 V) Reference
S	Source T erminal. M ay be an input or output
D	D rain Terminal. M ay be an input or output
IN	Logic Control Input
$\mathrm{V}_{\mathrm{D}}\left(\mathrm{V}_{\mathrm{S}}\right)$	A nalog Voltage on T erminals D, S
$\mathrm{R}_{\text {ON }}$	Ohmic Resistance between D and S
$\Delta \mathrm{R}_{\text {ON }}$	On R esistance Myatch between Any T wo Channels, i.e., Ronmax Rommin.
$\mathrm{R}_{\text {FLAT (ON) }}$	Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal range.
I_{S} (OFF)	Source L eakage C urrent with the Switch "OF F"
$I_{D}, I_{S}(O N)$	C hannel L eakage C urrent with the Switch "ON"
$V_{\text {INL }}$	M aximum Input Voltage for Logic " 0 "
$\mathrm{V}_{\text {INH }}$	M inimum Input Voltage for Logic "1"
$\mathrm{I}_{\text {INL }}\left(\mathrm{I}_{\text {INH }}\right)$	Input Current of the D igital Input
$\mathrm{C}_{S}(\mathrm{OFF})$	"OFF" Switch Source C apacitance. M easured with reference to ground.
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{S}(\mathrm{ON})$	"ON" Switch Capacitance. M easured with reference to ground.
$\mathrm{C}_{\text {IN }}$	Digital Input Capacitance
t_{ON}	D elay time measured between the 50% and 90% points of the digital inputs and the switch "ON" condition.
$\mathrm{t}_{\text {OFF }}$	Delay time measured between the 50\% and 90\% points of the digital input and the switch "OFF" condition.
$\mathrm{t}_{\text {ON }}(\overline{\mathrm{EN}})$	D elay time between the 50% and 90% points of the $\overline{\mathrm{EN}}$ digital input and the switch "ON" condition.
$\mathrm{t}_{\text {OFF }}(\overline{\mathrm{EN}})$	D elay time between the 50% and 90% points of the $\overline{\mathrm{EN}}$ digital input and the switch "OFF" condition.
$t_{\text {OPEN }}$	"OFF" time measured between the 80% points of both switches when switching from one address state to another.
C harge	A measure of the glitch impulse transferred Injection from the digital input to the analog output during switching.
Off Isolation	A measure of unwanted signal coupling through an "OFF" switch.
C rosstalk	A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.
On Response	The F requency Response of the "ON" Switch
Insertion Loss	The Loss Due to the ON Resistance of the Switch.

Typical Performance Characteristics- ADG786/ADG788

TPC 1. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Single Supply

TPC 4. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, Single Supply

TPC 7. Leakage Currents as a Function of $V_{D}\left(V_{S}\right)$

TPC 2. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Dual Supply

$\mathrm{V}_{\mathrm{D}}, \mathrm{V}_{\mathrm{S}}$, DRAIN OR SOURCE VOLTAGE - V
TPC 3. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, Single Supply

TPC 5. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, Dual Supply

TPC 8. Leakage Currents as a Function of $V_{D}\left(V_{S}\right)$

TPC 6. Leakage Currents as a Function of $V_{D}\left(V_{S}\right)$

TPC 9. Leakage Currents as a Function of Temperature

TPC 10. Leakage Currents as a Function of Temperature

TPC 13. Input Current, $I_{D D}$ vs. Switching Frequency

TPC 11. $t_{\text {ON }} / t_{\text {OFF }}$ Times vs. Temperature

TPC 12. On Response vs. Frequency

TPC 14. Off Isolation vs. Frequency

TPC 15. Crosstalk vs. Frequency

TPC 16. Charge Injection vs. Source Voltage

Test Circuits

Test Circuit 1. On Resistance

Test Circuit 2. IS (OFF)

Test Circuit 3. $I_{D}(O N)$

Test Circuit 5. Enable Delay, $t_{\text {ON }}(\overline{E N})$, $t_{\text {OFF }}(\overline{E N})$

*A0, A1, A2 for ADG786, IN1-4 for ADG788

Test Circuit 6. Break-Before-Make Delay, topen

Test Circuit 7. Charge Injection

When using CM OS devices, care must be taken to ensure correct power supply sequencing. Incorrect sequencing can result in the device being subjected to stresses beyond those maximum ratings listed in the data sheet. Digital and analog inputs should be applied to the device after supplies and ground. In dual supply applications, if digital and analog inputs may be applied prior to V_{DD} and $\mathrm{V}_{S S}$ supplies, the addition of a Schottky diode connected between $\mathrm{V}_{\text {SS }}$ and GND will ensure that the device powers on correctly. For single supply applications, V_{SS} should be tied to GND as close to the device as possible.

Test Circuit 9. Channel-to-Channel Crosstalk

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

20-Lead Chip Select Package

(CP-20)

umw. BDTI C. com/ADI

umw. BDTI C. com/ADI

