

Test Procedure for the NCP5252 Evaluation Board

Figure 1: Test Setup

The following steps describe the test procedure for all these boards:

Suggested Equipment:

Current limited DC Power Supply (e.g. AGILENT 6645A)	1pc
DC Volt-Meter able to measure up to 60 V DC (e.g. KEITHLEY 2000)	2pcs
DC Amp-Meter able to measure up to 2 A DC (e.g. KEITHLEY 2000)	.1pc
DC Amp-Meter able to measure up to 5 A DC (e.g. FLUKE 89 IV)	1pc
DC Electronic Load (e.g. AGILENT 6060B)	1pc

www.BDTIC.com/ON/

www.onsemi.com

Test Procedure:

- 1. Connect the test setup as shown in Figure 1.
- 2. Apply an input voltage, $V_{IN} = 4.5-13.2$ Vdc
- 3. Check that $V_{OUT} = 1.20 V dc \pm 5\%$
- 4. Ensure the power good pin goes high after the output voltage is in range
- 5. Set frequency jumpers to desired frequency
 - a. Jumper J2-1 to J2-2 to pull the frequency set pin to ground producing a switching frequency of 330 kHz
 - b. Do not install jumpers and the frequency set pin will float producing a switching frequency of 500 kHz
 - c. Jumper J2-2 to J2-3 to pull the frequency set pin to a regulated 5V producing a switching frequency of 1 MHz
- 6. Set Iour to desired level 0 A- 2 A
- 7. Check that $VOUT = 1.20 Vdc \pm 5\%$
- 8. Jumper J1-2 to J1-3 to disable the part
- 9. Remove Jumper J1-2 to J1-3 to enable the part
- 10. Check that $V_{OUT} = 1.20 \text{ Vdc} \pm 5\%$
- 11. Set Iout to check current trip desired level 2 A- 3.5 A
 - a. Ensure output voltage falls at the current limit point
- 12. Set Iout to 0A
- 13. Check that $VOUT = 1.20 Vdc \pm 5\%$
- 14. Turn off the load
- 15. Turn off VIN
- 16. End of the test

Figure 1: NCP5252 Efficiency at 9.6V-13.2V with a 1.18V Output Voltage at 25 C^o Ambient

