

Test Procedure for the NCS8353MNGEVB Evaluation Board

Equipment Required

One 8-to-24 V (12 V nominal) power supply is used to supply the demo board (+24V_IN banana 2x connector). Prior to connecting the power supply cable; ensure that the power source is off. If possible, limit the current of the DC supply to 100mA. An on-board 3.3 V regulator (Figure 2) is used to derive the voltage reference for the gain (G0,G1) and power limit (PL0,PL1) pins, so no additional supply voltage is required. Reference tables 1 and 2 for appropriate logic settings for the desired gain and power limit.

Gain and Power Limit Logic tables

Tuble 1. I ower Elline Configuration		
PL1	PL0	Power Limit
0	0	10 W
0	1	12 W
1	0	15 W
1	1	20 W

Table 1: Power Limit Configuration

Table 2: Gain Configuration

G1	G0	AMPLIFIER GAIN (dB)
0	0	20
0	1	26
1	0	32
1	1	36

Prepare for testing

- 1. Before powering up the board verify voltage and input polarity, connect the input source while it is off.
- 2. Place a jumper on the 3.3V_EN header pins.
- 3. Connect an input source to the R_IN and L_IN RCA input connectors.
 - a. Most waveform generators are single-ended sources so a jumper needs to be populated on R_G and L_G pin headers. If the source is differential similar to an Audio Precision then no jumpers are required for R_G and L_G.
- 4. Set the input source to 100mVpp, 1kHz sinewave output.
- 5. Connect the ROUT and LOUT banana connectors to 8 ohm speakers or high wattage resistors and then to an oscilloscope or audio analyzer.
- 6. Configure the gain to 20dB (G0=G1=0) and the power limit to 10W (PL0=PL1=0) via the slider switch (S201) by ensuring the slide switches are in the 'OFF' position.
- 7. Turn the supply on then enable the circuit through the EN slider switch on S201. The supply current should measure less than 50mA.
- 8. Increase the supply limit to 500mA.
- 9. Turn on the signal source.
- 10. Observe the reconstructed sinewave on the ROUT and LOUT banana connectors. It should measure 1Vp, 1kHz.

www.BDTIC.com/ON^{www.onsemi.com}